Publications by authors named "William E Magnusson"

Understanding the capacity of forests to adapt to climate change is of pivotal importance for conservation science, yet this is still widely unknown. This knowledge gap is particularly acute in high-biodiversity tropical forests. Here, we examined how tropical forests of the Americas have shifted community trait composition in recent decades as a response to changes in climate.

View Article and Find Full Text PDF

Tropical forest canopies are the biosphere's most concentrated atmospheric interface for carbon, water and energy. However, in most Earth System Models, the diverse and heterogeneous tropical forest biome is represented as a largely uniform ecosystem with either a singular or a small number of fixed canopy ecophysiological properties. This situation arises, in part, from a lack of understanding about how and why the functional properties of tropical forest canopies vary geographically.

View Article and Find Full Text PDF

Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition.

View Article and Find Full Text PDF

Understanding how the traits of lineages are related to diversification is key for elucidating the origin of variation in species richness. Here, we test whether traits are related to species richness among lineages of trees from all major biogeographical settings of the lowland wet tropics. We explore whether variation in mortality rate, breeding system and maximum diameter are related to species richness, either directly or via associations with range size, among 463 genera that contain wet tropical forest trees.

View Article and Find Full Text PDF

Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.

View Article and Find Full Text PDF

We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions.

View Article and Find Full Text PDF

The lack of synthesized information regarding biodiversity is a major problem among researchers, leading to a pervasive cycle where ecologists make field campaigns to collect information that already exists and yet has not been made available for a broader audience. This problem leads to long-lasting effects in public policies such as spending money multiple times to conduct similar studies in the same area. We aim to identify this knowledge gap by synthesizing information available regarding two Brazilian long-term biodiversity programs and the metadata generated by them.

View Article and Find Full Text PDF

Large predators have disproportionate effects on their underlying food webs. Thus, appropriately assigning trophic positions has important conservation implications both for the predators themselves and for their prey. Large-bodied predators are often referred to as apex predators, implying that they are many trophic levels above primary producers.

View Article and Find Full Text PDF
Article Synopsis
  • Amazonia's floodplain system is the largest and most biodiverse, but our understanding of its forest species and their unique roles is still limited, especially as changing flood patterns impact these communities.
  • About one-sixth of the tree diversity in Amazonia is specifically adapted to live in floodplain environments, indicating a significant ecological specialization within these forests.
  • The study emphasizes that the unique composition of floodplain forests is influenced by regional flooding patterns, highlighting the necessity of maintaining overall hydrological health to ensure the survival of Amazon's tree diversity and its essential ecosystem functions.
View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness.

View Article and Find Full Text PDF

Reference intervals for physiologic parameters, crucial for assessing the health status of animals, have been documented for various crocodilian species across the globe. Nonetheless, the establishment of plasma biochemical reference intervals specific to Amazonian crocodilians remains incomplete. In an effort to address this gap, we procured blood samples from 65 black caimans (Melanosuchus niger) and 58 spectacled caimans (Caiman crocodilus) during the period of September-December 2019 within the Anavilhanas National Park in the Brazilian Amazon region We aimed to define reference intervals for 11 key plasma variables measured, namely glucose, triglycerides, total cholesterol, calcium, magnesium, sodium, potassium, albumin, total protein, uric acid, and urea.

View Article and Find Full Text PDF

Long-term-ecological-research (LTER) faces many challenges, including the difficulty of obtaining long-term funding, changes in research questions and sampling designs, keeping researchers collecting standardized data for many years, impediments to interactions with local people, and the difficulty of integrating the needs of local decision makers with "big science". These issues result in a lack of universally accepted guidelines as to how research should be done and integrated among LTER sites. Here we discuss how the RAPELD (standardized field infrastructure system), can help deal with these issues as a complementary technique in LTER studies, allowing comparisons across landscapes and ecosystems and reducing sampling costs.

View Article and Find Full Text PDF
Article Synopsis
  • Indigenous societies have occupied the Amazon for over 12,000 years, but their impact on the forest is still not fully understood.
  • New LIDAR technology has helped discover 24 pre-Columbian earthworks hidden under the forest, suggesting many more archaeological sites may exist.
  • The presence of 53 domesticated tree species linked to these earthworks indicates past human management of the forest, highlighting the significant influence ancient societies had on Amazonian ecosystems.
View Article and Find Full Text PDF

For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions.

View Article and Find Full Text PDF

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used camera traps to gather a comprehensive data set of 154,123 records from 317 species of mammals, birds, and reptiles across eight Amazonian countries.
  • * This extensive data set facilitates new ecological research on the impacts of habitat loss and climate change in the Amazon, and its use is encouraged with proper citation.
View Article and Find Full Text PDF

Despite a global phase out of some point sources, mercury (Hg) remains elevated in aquatic food webs, posing health risks for fish-eating consumers. Many tropical regions have fast growing organisms, potentially short food chains, and few industrial point sources, suggesting low Hg baselines and low rates of trophic magnification with limited risk to people. Nevertheless, insufficient work on food-web Hg has been undertaken in the tropics and fish consumption is high in some regions.

View Article and Find Full Text PDF

A few decades ago, researchers from the National Institute for Amazonian Research (INPA) started a pilot study to integrate the ecological studies of several organisms using monitoring plots, which then became the embryo for the creation of the RAPELD (Rapid Assessments and Long-term Ecological Research) system used by the Program for Biodiversity Research (PPBio) and the Long-term ecological research site POPA (PELD Western Pará). They installed and maintained permanent plots in an Amazonian-savanna patch near to the village of Alter do Chão. Amazonian savannas constitute a threatened ecosystem comprising only 6% of the Amazon biome.

View Article and Find Full Text PDF

About 90% of the Amazon's energy potential remains unexploited, with many large hydroelectric dams yet to be built, so it is important to understand how terrestrial vertebrates are affected by reservoir formation and habitat loss. We investigated the influence of the construction of the Santo Antônio Hydroelectric dam on the Madeira River in southwestern Amazonia on the structure of frog assemblages based on samples collected in two years before the dam flooded (pre-stage) and one (post1-stage) and four years (post2-stage) after its construction. We surveyed five 500-ha plot systems three times during each stage; in the pre-stage we sampled 19 plots in low-lying areas that would be flooded by the dam, (from now called flooded pre-stage plots) and 45 plots in terra-firme forest (from now called unflooded pre-stage plots).

View Article and Find Full Text PDF
Article Synopsis
  • - The Program for Biodiversity Research (PPBio) has been operational since 2004, focusing on integrating various stakeholders in biodiversity research and establishing 161 standardized long-term ecological research sites across Brazil and beyond.
  • - The program has produced around 1200 publications addressing a wide range of biodiversity topics, and it provides researchers with access to extensive field data and metadata through its websites.
  • - PPBio emphasizes building local technical capacity and training students at both undergraduate and graduate levels, while facing challenges in securing long-term funding to support ongoing biodiversity studies.
View Article and Find Full Text PDF

The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region.

View Article and Find Full Text PDF