Breast cancer (BC) frequently metastasizes to bone, leading to poor patient prognosis. The infiltration of cancer cells in bone impairs its homeostasis, triggering a pathological interaction between tumors and resident cells. Preclinical models able to mimic the bone microenvironment are needed to advance translational findings on BC mechanisms and treatments.
View Article and Find Full Text PDFSystems with pronounced spin anisotropy are pivotal in advancing magnetization switching and spin-wave generation mechanisms that are fundamental to spintronic technologies. Quasi-van der Waals ferromagnets like CrTe represent seminal materials in this field, renowned for their delicate balance between frustrated layered geometries and magnetism. Despite extensive investigation, the nature of their magnetic ground state and the mechanism of spin reorientation under external fields and varying temperatures remain contested.
View Article and Find Full Text PDFBreast cancer stands as the primary cancer affecting women and the second most prevalent cause of cancer-related fatalities in developed nations. Consequently, there is a pressing demand for the advancement of therapeutic strategies that can be seamlessly integrated into clinical applications. We investigated the effectiveness of an encapsulation and decoration strategy employing biodegradable and biocompatible carriers together with 3D collagen-based culture models.
View Article and Find Full Text PDFObjectives: Gastrointestinal stromal tumors, the most prevalent mesenchymal tumors (80 %) of the gastrointestinal tract, comprise less than 1 % of all gastrointestinal neoplasms and about 5 % of all sarcomas. Despite their rarity, Gastrointestinal stromal tumors present diverse clinical manifestations, anatomic locations, histological subtypes, and prognostic outcomes.
Methods: This scoping review comprehensively explores the epidemiology, clinical characteristics, diagnostic and prognostic modalities, as well as new therapeutic options for Gastrointestinal stromal tumors.
van der Waals materials provide a versatile toolbox for the emergence of new quantum phenomena and fabrication of functional heterostructures. Among them, the trihalide VI stands out for its unique magnetic and structural landscape. Here we investigate the spin and orbital magnetic degrees of freedom in the layered ferromagnet VI by means of temperature-dependent X-ray absorption spectroscopy and X-ray magnetic circular and linear dichroism.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2023
Myxofibrosarcoma (MFS) is a malignant soft tissue sarcoma (STS) that originates in the body's connective tissues. It is characterized by the presence of myxoid (gel-like) and fibrous components and typically affects patients after the fifth decade of life. Considering the ongoing trend of increasing lifespans across many nations, MFS is likely to become the most common musculoskeletal sarcoma in the future.
View Article and Find Full Text PDFBackground: Polymorphous adenocarcinoma (PAC) represents the second most widespread neoplasm of the minor salivary glands. These tumors rarely develop a histological progression from low-grade to high-grade malignancy, named "high-grade transformation" (HGT). Only nine cases are described in literature.
View Article and Find Full Text PDFEngineering surfaces and interfaces of materials promises great potential in the field of heterostructures and quantum matter designers, with the opportunity to drive new many-body phases that are absent in the bulk compounds. Here, we focus on the magnetic Weyl kagome system CoSnS and show how for the terminations of different samples the Weyl points connect differently, still preserving the bulk-boundary correspondence. Scanning tunneling microscopy has suggested such a scenario indirectly, and here, we probe the Fermiology of CoSnS directly, by linking it to its real space surface distribution.
View Article and Find Full Text PDFMyxofibrosarcoma (MFS) and undifferentiated pleomorphic sarcoma (UPS) can be considered as a spectrum of the same disease entity, representing one of the most common adult soft tissue sarcoma (STS) of the extremities. While MFS is rarely metastasizing, it shows an extremely high rate of multiple frequent local recurrences (50-60% of cases). On the other hand, UPS is an aggressive sarcoma prone to distant recurrence, which is correlated to a poor prognosis.
View Article and Find Full Text PDFTumors are complex and heterogeneous diseases characterized by an intricate milieu and dynamically in connection with surrounding and distant tissues. In the last decades, great efforts have been made to develop novel preclinical models able to recapitulate the original features of tumors. However, the development of an functional and realistic tumor organ is still utopic and represents one of the major challenges to reproduce the architecture of the tumor ecosystem.
View Article and Find Full Text PDFA second-line standard of treatment has not yet been identified in patients with soft tissue sarcomas (STS), so identifying predictive markers could be a valuable tool. Recent studies have shown that the intratumoral and inflammatory systems significantly influence tumor aggressiveness. We aimed to investigate prognostic values of pre-therapy neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), systemic inflammatory index (SII), progression-free survival (PFS), and overall survival (OS) of STS patients receiving second-line treatment.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2023
Introduction: Neuroendocrine neoplasms (NENs) are a rare group of tumors exceptionally heterogeneous, with clinical presentation ranging from well differentiated more indolent tumors to poorly differentiated very aggressive forms. Both are often diagnosed after the metastatic spread and require appropriate medical treatment. A high priority need in the management of this disease is the identification of effective therapeutic strategies for advanced and metastatic patients.
View Article and Find Full Text PDFThe cytotoxicity of ionic liquids (ILs) has been receiving attention in the context of the biological and environmental impact of their vast field of applications. It has been ascertained that the cell membrane is the main target of ILs when they interact with microorganisms, cells and bacteria; nevertheless, studies at the micro- and nano-scale aiming at better understanding of the fundamental mechanisms of toxicity of ILs are lacking. In this work, we used atomic force microscopy (AFM) to investigate the impact of room-temperature ILs on the mechanical, morphological and electrostatic properties of solid-supported DOPC phospholipid bilayers, taken as models of biomembranes.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2022
In the field of nanomedicine a multitude of nanovectors have been developed for cancer application. In this regard, a less exploited target is represented by connective tissue. Sarcoma lesions encompass a wide range of rare entities of mesenchymal origin affecting connective tissues.
View Article and Find Full Text PDFNeuroendocrine tumors (NETs) are rare neoplasms frequently characterized by an upregulation of the mammalian rapamycin targeting (mTOR) pathway resulting in uncontrolled cell proliferation. The mTOR pathway is also involved in skeletal muscle protein synthesis and in adipose tissue metabolism. Everolimus inhibits the mTOR pathway, resulting in blockade of cell growth and tumor progression.
View Article and Find Full Text PDFIntroduction: Retinoblastoma (Rb) is the most common ocular paediatric malignancy and is caused by a mutation of the two alleles of the tumor suppressor gene, . The tumor microenvironment (TME) represents a complex system whose function is not yet well defined and where microvesicles, such as exosomes, play a key role in intercellular communication. Micro-RNAs (mRNAs) have emerged as important modifiers of biological mechanisms involved in cancer and been able to regulate tumor progression.
View Article and Find Full Text PDFMyxofibrosarcoma (MFS) is a common entity of adult soft tissue sarcomas (STS) characterized by a predilection of the extremities and a high local recurrence rate. Originally classified as a myxoid variant of malignant fibrous histiocytoma, this musculoskeletal tumor has been recognized since 2002 as a distinct histotype showing a spectrum of malignant fibroblastic lesions with myxoid stroma, pleomorphism and curvilinear vessels. Currently, the molecular pathogenesis of MFS is still poorly understood and its genomic profile exhibits a complex karyotype with a number of aberrations including amplifications, deletions and loss of function.
View Article and Find Full Text PDF