Publications by authors named "Ajay Parida"

The enriched fraction derived from L. (Dilleniaceae), also known as elephant apple was subjected to acute and sub-acute toxicological study to document its safety issues for use as fumigant. The enriched fractions were orally administered to both sexes of BALB/c mice at doses of 200, 800 and 1600 mg/kg bw for acute toxicity, and 50 and 500 mg/kg bw for 14 days of sub-acute toxicity.

View Article and Find Full Text PDF

In present study, the acute and sub-acute toxicities of Dihydro--coumaric acid isolated from the leaves of (Hemsl.) A. Gray was studied for safety issues in mammals For acute toxicity tests, isolated compound was administered orally in both male and female BALB/c mice at the doses of 200, 800, and 1,600 mg/kg body weight for 7 days.

View Article and Find Full Text PDF

The emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a serious pandemic has altered the global socioeconomic dynamics. The wide prevalence, high death counts, and rapid emergence of new variants urge for the establishment of research infrastructure to facilitate the rapid development of efficient therapeutic modalities and preventive measures. In agreement with this, SARS-CoV-2 strains were isolated from patient swab samples collected during the first COVID-19 wave in Odisha, India.

View Article and Find Full Text PDF

The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling.

View Article and Find Full Text PDF

The world's increase in rice (Oryza sativa L.) production is not keeping up with the increase in its population. To boost the introduction of new high-yielding cultivars, knowledge is being gained on the genes and quantitative trait loci (QTLs) determining the panicle phenotype.

View Article and Find Full Text PDF

Background: SARS-CoV2 infection in patients with comorbidities, particularly T2DM, has been a major challenge globally and has been shown to be associated with high morbidity and mortality. Here, we did whole blood immunophenotyping along with plasma cytokine, chemokine, antibody isotyping, and viral load from oropharyngeal swab to understand the immune pathology in the T2DM patients infected with SARS-CoV2.

Methods: Blood samples from 25 Covid-19 positive patients having T2DM, 10 Covid-19 positive patients not having T2DM, and 10 Covid-19 negative, non-diabetic healthy controls were assessed for various immune cells by analyzing for their signature surface proteins in mass cytometry.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major global health concern. This virus infects the upper respiratory tract and causes pneumonia-like symptoms. So far, few studies have shown alterations in nasopharyngeal (NP) microbial diversity, enrichment of opportunistic pathogens and their role in co-infections during respiratory infections.

View Article and Find Full Text PDF

Background: The underutilized species Vigna aconitifolia (Moth Bean) is an important legume crop cultivated in semi-arid conditions and is valued for its seeds for their high protein content. It is also a popular green manure cover crop that offers many agronomic benefits including nitrogen fixation and soil nutrients. Despite its economic potential, genomic resources for this crop are scarce and there is limited knowledge on the developmental process of this plant at a molecular level.

View Article and Find Full Text PDF

The increase in much required rice production through breeding programmes is on decline. The primary reason being poor filling of grains in the basal spikelets of the heavy and compact panicle rice developed. These spikelets are genetically competent to develop into well filled grains, but fail to do so because the carbohydrate assimilates available to them remain unutilized, reportedly due to poor activities of the starch biosynthesizing enzymes, high production of ethylene leading to enhanced synthesis of the downstream signaling component RSR1 protein that inhibits GBSS1 activity, poor endosperm cell division and endoreduplication of the endosperm nuclei, altered expression of the transcription factors influencing grain filling, enhanced expression and phosphorylation of 14-3-3 proteins, poor expression of the seed storage proteins, reduced synthesis of the hormones like cytokinins and IAA that promote grain filling, and altered expression of miRNAs preventing their normal role in grain filling.

View Article and Find Full Text PDF

Purpose: The current global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to the investigation with clinical, biochemical, immunological, and genomic characterization from patients to understand the pathophysiology of viral infection.

Methods: Samples were collected from six asymptomatic and six symptomatic SARS-CoV-2-confirmed hospitalized patients in Bhubaneswar, Odisha, India. Clinical details, biochemical parameters, and treatment regimen were collected from a hospital; viral load was determined by RT-PCR; and the levels of cytokines and circulating antibodies in plasma were assessed by Bio-Plex and isotyping, respectively.

View Article and Find Full Text PDF

Abiotic stresses, especially drought stress, are responsible for heavy losses in productivity, which in turn poses an imminent threat for future food security. Understanding plants' response to abiotic stress at the molecular level is crucially important for mitigating the impacts of climate change. is an important multipurpose plant with medicinal and nutritional properties and with an ability to grow in low water conditions, which makes the species an ideal candidate to study the regulatory mechanisms that modulate drought tolerance and its possible use in agroforestry system.

View Article and Find Full Text PDF

The response to severe acute respiratory syndrome coronavirus 2 (SARSCoV2) is largely impacted by the level of virus exposure and status of the host immunity. The nature of protection shown by direct asymptomatic contacts of coronavirus disease 2019 (COVID-19)-positive patients is quite intriguing. In this study, we have characterized the antibody titer, SARS-CoV-2 surrogate virus neutralization, cytokine levels, single-cell T-cell receptor (TCR), and B-cell receptor (BCR) profiling in asymptomatic direct contacts, infected cases, and controls.

View Article and Find Full Text PDF

Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.

View Article and Find Full Text PDF

Water scarcity and salinity are major challenges facing agriculture today, which can be addressed by engineering plants to grow in the boundless seawater. Understanding the mangrove plants at the molecular level will be necessary for developing such highly salt-tolerant agricultural crops. With this objective, we sequenced the genome of a salt-secreting and extraordinarily salt-tolerant mangrove species, Avicennia marina, that grows optimally in 75% seawater and tolerates >250% seawater.

View Article and Find Full Text PDF

Syrian golden hamsters (Mesocricetus auratus) infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) manifests lung pathology. In this study, efforts were made to check the infectivity of a local SARS-CoV-2 isolate in a self-limiting and non-lethal hamster model and evaluate the differential expression of lung proteins during acute infection and convalescence. The findings of this study confirm the infectivity of this isolate in vivo.

View Article and Find Full Text PDF

Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues.

View Article and Find Full Text PDF

Objective: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected the whole world, including Odisha, a state in eastern India. Many people have migrated to the state from different countries as well as other states during this SARS-CoV-2 pandemic. The aim of this study was to analyse the receptor-binding domain (RBD) sequence of the spike protein from isolates collected from throat swab samples of COVID-19-positive patients and further to assess the RBD affinity for angiotensin-converting enzyme 2 (ACE2) of different species, including humans.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has emerged as a global pandemic worldwide. In this study, we used ARTIC primers-based amplicon sequencing to profile 225 SARS-CoV-2 genomes from India. Phylogenetic analysis of 202 high-quality assemblies identified the presence of all the five reported clades 19A, 19B, 20A, 20B, and 20C in the population.

View Article and Find Full Text PDF

Screening the transcriptome of drought tolerant variety of little millet (Panicum sumatrense), a marginally cultivated, nutritionally rich, susbsistent crop, can identify genes responsible for its hardiness and enable identification of new sources of genetic variation which can be used for crop improvement. RNA-Seq generated ~ 230 million reads from control and treated tissues, which were assembled into 86,614 unigenes. In silico differential gene expression analysis created an overview of patterns of gene expression during exposure to drought and salt stress.

View Article and Find Full Text PDF

HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance.

View Article and Find Full Text PDF

With the rapidly deteriorating environmental conditions, the development of stress tolerant plants has become a priority for sustaining agricultural productivity. Therefore, studying the process of stress tolerance in naturally tolerant species hold significant promise. Phragmites karka is an invasive plant species found abundantly in tropical and sub tropical regions, fresh water regions and brackish marshy areas, such as river banks and lake shores.

View Article and Find Full Text PDF

Background: Plants have developed various sophisticated mechanisms to cope up with climate extremes and different stress conditions, especially by involving specific transcription factors (TFs). The members of the WRKY TF family are well known for their role in plant development, phytohormone signaling and developing resistance against biotic or abiotic stresses. In this study, we performed a genome-wide screening to identify and analyze the WRKY TFs in pearl millet (Pennisetum glaucum; PgWRKY), which is one of the most widely grown cereal crops in the semi-arid regions.

View Article and Find Full Text PDF

Salinization of soil is a prime abiotic stress that limits agriculture productivity worldwide. To Study the mechanisms that halophytes take up to survive under high salt condition is important in engineering salinity stress tolerance in sensitive species. is a halophyte plant that grows in the saline environment and extreme high tidal belt.

View Article and Find Full Text PDF

Plant resistance to salinity stress is one of the main challenges of agriculture. The comprehension of the molecular and cellular mechanisms involved in plant tolerance to salinity can help to contrast crop losses due to high salt conditions in soil. In this study, and , two plants with capacity to adapt to high salinity levels, were investigated at proteome level to highlight the key processes involved in their tolerance to NaCl.

View Article and Find Full Text PDF