The demand for rice is likely to increase approximately 1.5 times by the year 2050. In contrast, the rice production is stagnant since the past decade as the ongoing rice breeding program is unable to increase the production further, primarily because of the problem in grain filling.
View Article and Find Full Text PDFFunct Plant Biol
July 2022
The world's increase in rice (Oryza sativa L.) production is not keeping up with the increase in its population. To boost the introduction of new high-yielding cultivars, knowledge is being gained on the genes and quantitative trait loci (QTLs) determining the panicle phenotype.
View Article and Find Full Text PDFPlant Physiol Biochem
May 2022
The increase in much required rice production through breeding programmes is on decline. The primary reason being poor filling of grains in the basal spikelets of the heavy and compact panicle rice developed. These spikelets are genetically competent to develop into well filled grains, but fail to do so because the carbohydrate assimilates available to them remain unutilized, reportedly due to poor activities of the starch biosynthesizing enzymes, high production of ethylene leading to enhanced synthesis of the downstream signaling component RSR1 protein that inhibits GBSS1 activity, poor endosperm cell division and endoreduplication of the endosperm nuclei, altered expression of the transcription factors influencing grain filling, enhanced expression and phosphorylation of 14-3-3 proteins, poor expression of the seed storage proteins, reduced synthesis of the hormones like cytokinins and IAA that promote grain filling, and altered expression of miRNAs preventing their normal role in grain filling.
View Article and Find Full Text PDF