Publications by authors named "Adriana Estrada-Bernal"

Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease characterized by excessive extracellular matrix deposition. Current IPF therapies slow disease progression but do not stop or reverse it. The (myo)fibroblasts are thought to be the main cellular contributors to excessive extracellular matrix production in IPF.

View Article and Find Full Text PDF

Inhaled therapeutics have high potential for the treatment of chronic respiratory diseases of high unmet medical need, such as idiopathic pulmonary fibrosis (IPF). Preclinical and early clinical evidence show that cellular communication network factor 2 (CCN2), previously called connective tissue growth factor (CTGF), is a promising target for the treatment of IPF. In recent phase 3 clinical trials, however, systemic CCN2 inhibition failed to demonstrate a clinically meaningful benefit.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied gene fusions in cancer that involve receptor tyrosine kinases (RTKs) to find out how common they are and how they can be treated.
  • They looked at many tumor samples and discovered 1,251 RTK fusions, mostly in glioblastoma, breast cancer, and ovarian cancer.
  • The study shows that these fusions are bad for health (oncogenic) but can be targeted with specific cancer medications (EGFR and HER2 inhibitors), and they suggest a way to name and classify these fusions.
View Article and Find Full Text PDF

KRAS-activating mutations are oncogenic drivers and are correlated with radioresistance of multiple cancers, including colorectal cancer, but the underlying precise molecular mechanisms remain elusive. Herein we model the radiosensitivity of isogenic HCT116 and SW48 colorectal cancer cell lines bearing wild-type or various mutant KRAS isoforms. We demonstrate that KRAS mutations indeed lead to radioresistance accompanied by reduced radiotherapy-induced mitotic catastrophe and an accelerated release from G2/M arrest.

View Article and Find Full Text PDF
Article Synopsis
  • Rearrangements during transfection occur in a small percentage (1-2%) of lung adenocarcinomas and are now targeted by tyrosine kinase inhibitors; researchers developed three new cancer cell lines (CUTO22, CUTO32, CUTO42) to explore RET signaling and therapy responses.
  • Sensitivity tests revealed CUTO22 and CUTO42 to be responsive to multiple RET inhibitors, while CUTO32 showed over ten times resistance and exhibited different regulation of the AKT pathway compared to the others.
  • Drug screening identified CUTO32 as sensitive to Polo-like kinase 1 and Aurora kinase A inhibitors, and the effectiveness of RET inhibitor BLU-667 was demonstrated in CUTO42 tumors but less so
View Article and Find Full Text PDF

Purpose: Approved therapies for exon 20, mutations, and fusions are currently lacking for non-small cell lung cancer and other cancers. Tarloxotinib is a prodrug that harnesses tumor hypoxia to generate high levels of a potent, covalent pan-HER tyrosine kinase inhibitor, tarloxotinib-effector (tarloxotinib-E), within the tumor microenvironment. This tumor-selective delivery mechanism was designed to minimize the dose-limiting toxicities that are characteristic of systemic inhibition of wild-type EGFR.

View Article and Find Full Text PDF

Although most activating mutations of epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancers (NSCLCs) are sensitive to available EGFR tyrosine kinase inhibitors (TKIs), a subset with alterations in exon 20 of EGFR and HER2 are intrinsically resistant and lack an effective therapy. We used in silico, in vitro, and in vivo testing to model structural alterations induced by exon 20 mutations and to identify effective inhibitors. 3D modeling indicated alterations restricted the size of the drug-binding pocket, limiting the binding of large, rigid inhibitors.

View Article and Find Full Text PDF

Despite initial benefit from tyrosine kinase inhibitors (TKIs), patients with advanced non-small cell lung cancer (NSCLC) harboring (ALK) and (ROS1) gene fusions ultimately progress. Here, we report on the potential resistance mechanisms in a series of patients with ALK and ROS1 NSCLC progressing on different types and/or lines of -targeted therapy. We used a combination of next-generation sequencing (NGS), multiplex mutation assay, direct DNA sequencing, RT-PCR, and FISH to identify fusion variants/partners and copy-number gain (CNG), kinase domain mutations (KDM), and copy-number variations (CNVs) in other cancer-related genes.

View Article and Find Full Text PDF

A subset of lung cancers is dependent on the anaplastic lymphoma kinase () oncogene for survival, a mechanism that is exploited by the use of the ALK inhibitor crizotinib. Despite exceptional initial tumor responses to ALK inhibition by crizotinib, durable clinical response is limited and the emergence of drug resistance occurs. Furthermore, intrinsic resistance is frequently observed, where patients fail to respond initially to ALK-inhibitor therapy.

View Article and Find Full Text PDF

Purpose: Over 90% of pancreatic adenocarcinoma PC express oncogenic mutant KRAS that constitutively activates the Raf-MEK-MAPK pathway conferring resistance to both radiation and chemotherapy. MEK inhibitors have shown promising anti-tumor responses in recent preclinical and clinical studies, and are currently being tested in combination with radiation in clinical trials. Here, we have evaluated the radiosensitizing potential of a novel MEK1/2 inhibitor GSK1120212 (GSK212,or trametinib) and evaluated whether MEK1/2 inhibition alters DNA repair mechanisms in multiple PC cell lines.

View Article and Find Full Text PDF

Unlabelled: Oncogenic TRK fusions induce cancer cell proliferation and engage critical cancer-related downstream signaling pathways. These TRK fusions occur rarely, but in a diverse spectrum of tumor histologies. LOXO-101 is an orally administered inhibitor of the TRK kinase and is highly selective only for the TRK family of receptors.

View Article and Find Full Text PDF

Amyloid precursor protein (APP), encoded on Hsa21, functions as a cell adhesion molecule (CAM) in axonal growth cones (GCs) of the developing brain. We show here that axonal GCs of human fetal Down syndrome (DS) neurons (and of a DS mouse model) overexpress APP protein relative to euploid controls. We investigated whether DS neurons generate an abnormal, APP-dependent GC phenotype in vitro.

View Article and Find Full Text PDF

Amyloid precursor protein (APP), a transmembrane glycoprotein, is well known for its involvement in the pathogenesis of Alzheimer disease of the aging brain, but its normal function is unclear. APP is a prominent component of the adult as well as the developing brain. It is enriched in axonal growth cones (GCs) and has been implicated in cell adhesion and motility.

View Article and Find Full Text PDF

The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level.

View Article and Find Full Text PDF

FTY720 is a sphingosine analogue that down regulates expression of sphingosine-1-phosphate receptors and causes apoptosis of multiple tumor cell types, including glioma cells. This study examined the effect of FTY720 on brain tumor stem cells (BTSCs) derived from human glioblastoma (GBM) tissue. FTY720 treatment of BTSCs led to rapid inactivation of ERK MAP kinase, leading to upregulation of the BH3-only protein Bim and apoptosis.

View Article and Find Full Text PDF

We have previously shown that high expression levels of the lipid kinase sphingosine kinase-1 (SphK1) correlate with poor survival of glioblastoma (GBM) patients. In this study we examined the regulation of SphK1 expression by epidermal growth factor receptor (EGFR) signaling in GBM cells. As the EGFR gene is often overexpressed and mutated in GBM, and EGFR has been shown to regulate SphK1 in some cell types, we examined the effect of EGF signaling and the constitutively active EGFRvIII mutant on SphK1 in GBM cells.

View Article and Find Full Text PDF

Cell motility necessitates the rapid formation and disassembly of cell adhesions. We have studied adhesions in a highly motile melanoma cell line using various biochemical approaches and microscopic techniques to image close adhesions. We report that WM-1617 melanoma cells contain at least two types of close adhesion: classic focal adhesions and more extensive, irregularly shaped adhesions that tend to occur along lamellipodial edges.

View Article and Find Full Text PDF

Whereas Kvbeta2 subunits modulate potassium current properties carried by Kv1 channel complexes in heterologous systems, little is known about the contributions of Kvbeta2 subunits to native potassium channel function. Using antisense approaches and in situ recordings from Xenopus embryo spinal cord neurons, we tested the in vivo roles of Kvbeta2 subunits in modulation of voltage-dependent potassium current (IKv). We focused on 1) two different populations of dorsal spinal neurons that express both Kvbeta2 and Kv1 alpha-subunit genes and 2) the 24- and 48-h developmental period, during which IKv undergoes developmental regulation.

View Article and Find Full Text PDF

Repellents evoke growth cone turning by eliciting asymmetric, localized loss of actin cytoskeleton together with changes in substratum attachment. We have demonstrated that semaphorin-3A (Sema3A)-induced growth cone detachment and collapse require eicosanoid-mediated activation of protein kinase C epsilon (PKC epsilon) and that the major PKC epsilon target is the myristoylated, alanine-rich C-kinase substrate (MARCKS). Here, we show that PKC activation is necessary for growth cone turning and that MARCKS, while at the membrane, colocalizes with alpha3-integrin in a peripheral adhesive zone of the growth cone.

View Article and Find Full Text PDF

Tumor necrosis factor alpha (TNF-alpha) is one of the best-described cell death promoters. In murine L929 fibroblasts, dexamethasone inhibits TNF-alpha-induced cytotoxicity. Since phosphatidyl inositol 3 kinase (PI3K) and nuclear factor kappa B (NF-kappaB) proteins regulate several survival pathways, we evaluated their participation in dexamethasone protection against TNF-alpha cell death.

View Article and Find Full Text PDF

The ATPase inhibitor protein (IP) of mitochondria was detected in the plasma membrane of living endothelial cells by flow cytometry, competition assays, and confocal microscopy of cells exposed to IP antibodies. The plasma membranes of endothelial cells also possess beta-subunits of the mitochondrial ATPase. Plasma membranes have the capacity to bind exogenous IP.

View Article and Find Full Text PDF