The cytokine Interferon-γ (IFN-γ) exerts powerful immunoregulatory effects on the adaptive immune system and also enhances functions of the neutrophil (PMN). The clinical use of IFN-γ has been driven by the finding that its administration to patients with chronic granulomatous disease (CGD) results in decreased incidence and severity of infections. However, IFN-γ has no effect on the characteristic defect of CGD, the inability to convert oxygen to microbicidal metabolites including superoxide anion (O2-) during the phagocytosis associated oxidative burst.
View Article and Find Full Text PDFMitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNA). mt-tRNA is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome.
View Article and Find Full Text PDFObjectives: The purpose of this study was to assess the phenotype of Filamin C (FLNC) truncating variants in dilated cardiomyopathy (DCM) and understand the mechanism leading to an arrhythmogenic phenotype.
Background: Mutations in FLNC are known to lead to skeletal myopathies, which may have an associated cardiac component. Recently, the clinical spectrum of FLNC mutations has been recognized to include a cardiac-restricted presentation in the absence of skeletal muscle involvement.
Introduction: ROS1 gene fusions are a well-characterized class of oncogenic driver found in approximately 1% to 2% of NSCLC patients. ROS1-directed therapy in these patients is more efficacious and is associated with fewer side effects compared to chemotherapy and is thus now considered standard-of-care for patients with advanced disease. Consequently, accurate detection of ROS1 rearrangements/fusions in clinical tumor samples is vital.
View Article and Find Full Text PDFIdiopathic scoliosis (IS) is a structural lateral spinal curvature of ≥10° that affects up to 3% of otherwise healthy children and can lead to life-long problems in severe cases. It is well-established that IS is a genetic disorder. Previous studies have identified genes that may contribute to the IS phenotype, but the overall genetic etiology of IS is not well understood.
View Article and Find Full Text PDFAdrenocortical carcinoma (ACC) is an aggressive cancer with a 5-year survival rate <35%. Mortality remains high due to lack of targeted therapies. Using bioinformatic analyses, we identified maternal embryonic leucine zipper kinase (MELK) as 4.
View Article and Find Full Text PDFClin Cancer Res
July 2018
Despite initial benefit from tyrosine kinase inhibitors (TKIs), patients with advanced non-small cell lung cancer (NSCLC) harboring (ALK) and (ROS1) gene fusions ultimately progress. Here, we report on the potential resistance mechanisms in a series of patients with ALK and ROS1 NSCLC progressing on different types and/or lines of -targeted therapy. We used a combination of next-generation sequencing (NGS), multiplex mutation assay, direct DNA sequencing, RT-PCR, and FISH to identify fusion variants/partners and copy-number gain (CNG), kinase domain mutations (KDM), and copy-number variations (CNVs) in other cancer-related genes.
View Article and Find Full Text PDFEndocr Relat Cancer
April 2018
Adrenocortical cancer (ACC) is an orphan malignancy that results in heterogeneous clinical phenotypes and molecular genotypes. There are no curative treatments for this deadly cancer with 35% survival at five years. Our understanding of the underlying pathobiology and our ability to test novel therapeutic targets has been limited due to the lack of preclinical models.
View Article and Find Full Text PDFPediatr Blood Cancer
December 2017
Background: Posterior fossa (PF) ependymomas (EPNs) in infants less than 1 year of age (iEPN-PF) have a poorer clinical outcome than EPNs in older children. While radiation therapy is the standard of care for the latter, it is withheld in infants to avoid neurotoxicity to immature brain. It is unknown whether the adverse outcome in iEPN-PFs is due to treatment differences or aggressive biology.
View Article and Find Full Text PDFHum Mol Genet
February 2017
An infant presented with fatal infantile lactic acidosis and cardiomyopathy, and was found to have profoundly decreased activity of respiratory chain complex I in muscle, heart and liver. Exome sequencing revealed compound heterozygous mutations in NDUFB10, which encodes an accessory subunit located within the PD part of complex I. One mutation resulted in a premature stop codon and absent protein, while the second mutation replaced the highly conserved cysteine 107 with a serine residue.
View Article and Find Full Text PDFJACC Basic Transl Sci
August 2016
Objective: To identify novel dilated cardiomyopathy (DCM) causing genes, and to elucidate the pathological mechanism leading to DCM by utilizing zebrafish as a model organism.
Background: DCM, a major cause of heart failure, is frequently familial and caused by a genetic defect. However, only 50% of DCM cases can be attributed to a known DCM gene variant, motivating the ongoing search for novel disease genes.
Background: Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas).
View Article and Find Full Text PDFBackground: Activated B lymphocytes harbor programmed DNA double-strand breaks (DSBs) initiated by activation-induced deaminase (AID) and repaired by non-homologous end-joining (NHEJ). While it has been proposed that these DSBs during secondary antibody gene diversification are the primary source of chromosomal translocations in germinal center (GC)-derived B cell lymphomas, this point has not been directly addressed due to the lack of proper mouse models.
Methods: In the current study, we establish a unique mouse model by specifically deleting a NHEJ gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in GC B cells, which results in the spontaneous development of B cell lymphomas that possess features of GC B cells.
Background: The titin gene (TTN) encodes the largest human protein, which plays a central role in sarcomere organization and passive myocyte stiffness. TTN truncating mutations cause dilated cardiomyopathy (DCM); however, the role of TTN missense variants in DCM has been difficult to elucidate because of the presence of background TTN variation.
Methods And Results: A cohort of 147 DCM index subjects underwent DNA sequencing for 313 TTN exons covering the N2B and N2BA cardiac isoforms of TTN.
Orphanet J Rare Dis
June 2015
Background: Short-chain enoyl-CoA hydratase (SCEH, encoded by ECHS1) catalyzes hydration of 2-trans-enoyl-CoAs to 3(S)-hydroxy-acyl-CoAs. SCEH has a broad substrate specificity and is believed to play an important role in mitochondrial fatty acid oxidation and in the metabolism of branched-chain amino acids. Recently, the first patients with SCEH deficiency have been reported revealing only a defect in valine catabolism.
View Article and Find Full Text PDFSome familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell-precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.
View Article and Find Full Text PDFIdiopathic scoliosis occurs in 3% of individuals and has an unknown etiology. The objective of this study was to identify rare variants that contribute to the etiology of idiopathic scoliosis by using exome sequencing in a multigenerational family with idiopathic scoliosis. Exome sequencing was completed for three members of this multigenerational family with idiopathic scoliosis, resulting in the identification of a variant in the HSPG2 gene as a potential contributor to the phenotype.
View Article and Find Full Text PDFThe most common cause of dilated cardiomyopathy and heart failure (HF) is ischemic heart disease; however, in a third of all patients the cause remains undefined and patients are diagnosed as having idiopathic dilated cardiomyopathy (IDC). Recent studies suggest that many patients with IDC have a family history of HF and rare genetic variants in over 35 genes have been shown to be causative of disease. We employed whole-exome sequencing to identify the causative variant in a large family with autosomal dominant transmission of dilated cardiomyopathy.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) commonly causes heart failure and shows extensive genetic heterogeneity that may be amenable to newly developed next-generation DNA sequencing of the exome. In this study we report the successful use of exome sequencing to identify a pathogenic variant in the TNNT2 gene using segregation analysis in a large DCM family. Exome sequencing was performed on three distant relatives from a large family with a clear DCM phenotype.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2013
Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a key regulator of the innate immune system, particularly in the skin where, in response to molecular triggers such as pathogen-associated or damage-associated molecular patterns, the NLRP1 inflammasome promotes caspase-1-dependent processing of bioactive interleukin-1β (IL-1β), resulting in IL-1β secretion and downstream inflammatory responses. NLRP1 is genetically associated with risk of several autoimmune diseases including generalized vitiligo, Addison disease, type 1 diabetes, rheumatoid arthritis, and others. Here we identify a repertoire of variation in NLRP1 by deep DNA resequencing.
View Article and Find Full Text PDFGeneralized vitiligo (GV) is characterized by autoimmune destruction of melanocytes by skin-homing cytotoxic T-cells (CTLs) that target melanocyte autoantigens. Two recent genomewide association studies (GWAS) of GV in European-derived whites (EUR) have demonstrated genetic association with , encoding granzyme B, a marker of activated CTLs that mediates target-cell apoptosis, as well as autoantigen activation and consequent initiation and propagation of autoimmunity. Here, we describe detailed genetic analyses of the region of chromosome 14q12 to identify genetic variation potentially causal for GV, implicating two non-synonymous SNPs in strong linkage disequilibrium that comprise part of a common multi-variant high-risk haplotype, rs8192917-C— rs11539752-C (55R-94A).
View Article and Find Full Text PDFWe previously reported a genome-wide association study (GWAS) identifying 14 susceptibility loci for generalized vitiligo. We report here a second GWAS (450 individuals with vitiligo (cases) and 3,182 controls), an independent replication study (1,440 cases and 1,316 controls) and a meta-analysis (3,187 cases and 6,723 controls) identifying 13 additional vitiligo-associated loci. These include OCA2-HERC2 (combined P = 3.
View Article and Find Full Text PDFGeneralized vitiligo is a common autoimmune disease in which acquired patchy depigmentation of skin, hair, and mucous membranes results from loss of melanocytes from involved areas. Previous genetic analyses have focused on vitiligo susceptibility, and have identified a number of genes involved in disease risk. Age of onset of generalized vitiligo also involves a substantial genetic component, but has not previously been studied systematically.
View Article and Find Full Text PDF