Publications by authors named "Adrian Israelson"

Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease that has no proper cure. Pre-clinical studies on ALS mice are an essential milestone toward clinical trials. Here, we present a protocol for handling and using SOD1 mice for ALS pre-clinical studies.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in the SOD1 gene are linked to amyotrophic lateral sclerosis (ALS), leading to the loss of motor neurons and associated symptoms.
  • Researchers found that injecting macrophage migration inhibitory factor (MIF) into SOD1 mice improves motor function, slows down ALS progression, and increases survival by reducing SOD1 misfolding and neuroinflammation.
  • Low levels of MIF were observed in both stem cell-derived motor neurons from ALS patients and in the tissues of deceased sporadic ALS patients, suggesting that MIF could be a potential therapy for ALS.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons in the brain and spinal cord. Accumulating evidence suggests that ALS is not solely a neuronal cell- or brain tissue-autonomous disease and that neuroinflammation plays a key role in disease progression. Furthermore, whereas both CD4 and CD8 T cells were observed in spinal cords of ALS patients and in mouse models of the disease, their role in the neuroinflammatory process, especially considering their functional changes with age, is not fully explored.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurological disorder with currently no cure. Central to the cellular dysfunction associated with this fatal proteinopathy is the accumulation of unfolded/misfolded superoxide dismutase 1 (SOD1) in various subcellular locations. The molecular mechanism driving the formation of SOD1 aggregates is not fully understood but numerous studies suggest that aberrant aggregation escalates with folding instability of mutant apoSOD1.

View Article and Find Full Text PDF
Article Synopsis
  • A new antibody, scFv-SE21, specifically targets a part of misfolded SOD1 that is linked to its harmful behavior, without affecting healthy proteins.
  • In studies using mice, delivering scFv-SE21 via a virus improved neuron health, reduced misfolded SOD1 levels, decreased neuroinflammation, and significantly increased survival rates, highlighting a potential new treatment strategy for ALS.
View Article and Find Full Text PDF

Multiple sclerosis (MS) is a widespread chronic neuroinflammatory and neurodegenerative disease. Microglia play a crucial role in the pathogenesis of MS via the release of cytokines and reactive oxygen species, e.g.

View Article and Find Full Text PDF

Impaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the degeneration of motor neurons. Mutations in the superoxide dismutase (SOD1) gene, causing protein misfolding and aggregation, were suggested as the pathogenic mechanisms involved in familial ALS cases. In the present study, we investigated the potential therapeutic effect of C4 and C5, two derivatives of the chemical chaperone 4-phenylbutyric acid (4-PBA).

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of upper and lower motor neurons. About 20% of familial ALS cases are caused by dominant mutations in SOD1. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is unclear why misfolded SOD1 accumulates within specific tissues.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a fatal multifactorial neurodegenerative disease characterized by the selective death of motor neurons. Cytosolic phospholipase A alpha (cPLAα) upregulation and activation in the spinal cord of ALS patients has been reported. We have previously shown that cPLAα upregulation in the spinal cord of mutant SOD1 transgenic mice (SOD1) was detected long before the development of the disease, and inhibition of cPLAα upregulation delayed the disease's onset.

View Article and Find Full Text PDF

Multiple neurodegenerative diseases (NDDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are being suggested to have common cellular and molecular pathological mechanisms, characterized mainly by protein misfolding and aggregation. These large inclusions, most likely, represent an end stage of a molecular cascade; however, the soluble misfolded proteins, which take part in earlier steps of this cascade, are the more toxic players. These pathological proteins, which characterize each specific disease, lead to the selective vulnerability of different neurons, likely resulting from a combination of different intracellular mechanisms, including mitochondrial dysfunction, ER stress, proteasome inhibition, excitotoxicity, oxidative damage, defects in nucleocytoplasmic transport, defective axonal transport and neuroinflammation.

View Article and Find Full Text PDF

Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a devastating incurable neurological disorder characterized by motor neuron (MN) death and muscle dysfunction leading to mean survival time after diagnosis of only 2-5 years. A potential ALS treatment is to delay the loss of MNs and disease progression by the delivery of trophic factors. Previously, we demonstrated that implanted mesoporous silica nanoparticles (MSPs) loaded with trophic factor peptide mimetics support survival and induce differentiation of co-implanted embryonic stem cell (ESC)-derived MNs.

View Article and Find Full Text PDF

Mutations in superoxide dismutase (SOD1) are the second most common cause of familial amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the death of motor neurons in the brain and spinal cord. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles, such as mitochondria and ER, disrupting their functions. Here, we demonstrate that mutant SOD1 binds specifically to the N-terminal domain of the voltage-dependent anion channel (VDAC1), an outer mitochondrial membrane protein controlling cell energy, metabolic and survival pathways.

View Article and Find Full Text PDF

The Cu/Zn-superoxide dismutase (SOD1) is a ubiquitous enzyme that catalyzes the dismutation of superoxide radicals to oxygen and hydrogen peroxide. In addition to this principal reaction, the enzyme is known to catalyze, with various efficiencies, several redox side-reactions using alternative substrates, including biological thiols, all involving the catalytic copper in the enzyme's active-site, which is relatively surface exposed. The accessibility and reactivity of the catalytic copper is known to increase upon SOD1 misfolding, structural alterations caused by a mutation or environmental stresses.

View Article and Find Full Text PDF
Article Synopsis
  • ALS is a complex neurodegenerative disorder influenced by both genetic and environmental factors, showing different symptoms based on individual circumstances.
  • Research on Sod1 transgenic mice indicates that changes in gut bacteria (dysbiosis) and metabolites can affect the severity of ALS, with specific bacteria like Akkermansia muciniphila improving symptoms while others worsen them.
  • A preliminary study in humans shows similar differences in microbiome and metabolite levels between ALS patients and healthy individuals, suggesting that gut-brain interactions may play a role in ALS, warranting further research.
View Article and Find Full Text PDF

Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by the loss of upper and lower motor neurons. Transgenic mice that overexpress mutant SOD1 develop paralysis and accumulate misfolded SOD1 onto the cytoplasmic faces of intracellular organelles, including mitochondria and endoplasmic reticulum (ER). Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit mutant SOD1 misfolding and binding to intracellular membranes.

View Article and Find Full Text PDF

Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease caused by the progressive loss of motor neurons in the brain and spinal cord. It has been suggested that toxicity of mutant SOD1 results from its misfolding, however, it is yet unclear why misfolded SOD1 accumulates specifically within motor neurons. We recently demonstrated that macrophage migration inhibitory factor (MIF)-a multifunctional protein with cytokine/chemokine activity and cytosolic chaperone-like properties-inhibits the accumulation of misfolded SOD1.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder, with a 10% genetic linkage, of which 20% of these cases may be attributed to mutations in superoxide dismutase (SOD1). Specific mutations in SOD1 have been associated with disease duration, which can be highly variable ranging from a life expectancy of 3 to beyond 10 years. SOD1 neurotoxicity has been attributed to aberrant accumulation of misfolded SOD1, which in its soluble form binds to intracellular organelles disrupting their function or forms insoluble toxic aggregates.

View Article and Find Full Text PDF

Macrophage migration inhibitory factor (MIF) is a conserved cytokine found as a homotrimer protein. It is found in a wide spectrum of cell types in the body including neuronal and non-neuronal cells. MIF is implicated in several biological processes; chemo-attraction, cytokine activity, and receptor binding, among other functions.

View Article and Find Full Text PDF

Nucleocytoplasmic transport refers to the import and export of large molecules from the cell nucleus. Recently, a number of studies have shown a connection between amyotrophic lateral sclerosis (ALS) and impairments in the nucleocytoplasmic pathway. ALS is a neurodegenerative disease affecting the motor neurons and resulting in paralysis and ultimately in death, within 2-5 years on average.

View Article and Find Full Text PDF

Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that leads to the death of the upper and lower motor neurons. Superoxide dismutase 1 (SOD1) is an ALS pathogenic protein, whose misfolding results in the formation of amyloid aggregates. The mechanism underlying SOD1 pathogenesis in ALS remains obscure, but one possible mechanism involves gain-of-interaction, in which the misfolded soluble SOD1 forms abnormal protein-protein interactions (PPIs) with various cellular proteins, including with other SOD1 molecules, thereby interfering with their function.

View Article and Find Full Text PDF