98%
921
2 minutes
20
Mutations in superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons in the brain and spinal cord. It has been suggested that the toxicity of mutant SOD1 results from its misfolding and accumulation on the cytoplasmic faces of intracellular organelles, including the mitochondria and endoplasmic reticulum (ER) of ALS-affected tissues. Recently, macrophage migration inhibitory factor (MIF) was shown to directly inhibit the accumulation of misfolded SOD1 and its binding to intracellular membranes, but the role of endogenous MIF in modulating SOD1 misfolding in vivo remains unknown. To elucidate this role, we bred MIF-deficient mice with SOD1(G85R) mice, which express a dismutase-inactive mutant of SOD1 and are considered a model of familial ALS. We found that the accumulation of misfolded SOD1, its association with mitochondrial and ER membranes, and the levels of sedimentable insoluble SOD1 aggregates were significantly higher in the spinal cords of SOD1(G85R)-MIF(-/-) mice than in their SOD1(G85R)-MIF(+/+) littermates. Moreover, increasing MIF expression in neuronal cultures inhibited the accumulation of misfolded SOD1 and rescued from mutant SOD1-induced cell death. In contrast, the complete elimination of endogenous MIF accelerated disease onset and late disease progression and shortened the lifespan of the SOD1(G85R) mutant mice. These findings indicate that MIF plays a significant role in the folding and misfolding of SOD1 in vivo, and they have implications for the potential therapeutic role of up-regulating MIF within the nervous system to modulate the selective accumulation of misfolded SOD1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5018779 | PMC |
http://dx.doi.org/10.1073/pnas.1604600113 | DOI Listing |
Int J Mol Sci
August 2025
Puls Med Association, 051885 Bucharest, Romania.
Amyotrophic lateral sclerosis (ALS) is still a heterogeneous neurodegenerative disorder that can be identified clinically and biologically, without a strong set of biomarkers that can adequately measure its fast rate of progression and molecular heterogeneity. In this review, we intend to consolidate the most relevant and timely advances in ALS biomarker discovery, in order to begin to bring molecular, imaging, genetic, and digital areas together for potential integration into a precision medicine approach to ALS. Our goal is to begin to display how several biomarkers in development (e.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
Neurodegenerative disorders are a group of hereditary and sporadic conditions that are characterized by progressive nervous system dysfunctions. Mutations in the gene encoding human superoxide dismutase 1 (hSOD1) were among the first to be proposed in line with the protein aggregation theory for ALS disease. This study aimed to characterize the (G41D) mutation/charge effects on the biochemical and biophysical properties of the SOD1 structure through computational and experimental methods.
View Article and Find Full Text PDFRedox Biol
August 2025
Metabolic Pathophysiology Research Group, Dept of Experimental Medicine, University of Lleida-IRBLleida, Avda Rovira Roure, 80 E25196, Lleida, Spain. Electronic address:
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive motor neuron degeneration and pathological aggregation of TDP-43. While protein misfolding and impaired autophagy are established features, accumulating evidence highlights the nuclear pore complex (NPC)as a vulnerable, redox-sensitive hub in ALS pathogenesis. Here, we show that selective loss of NPC components, particularly the scaffold proteins NUP107 and NUP93, and FG-repeat-containing components-is a consistent finding across ALS postmortem spinal cord, SOD1^G93A and TDP-43 mutant mouse models, and human cell systems.
View Article and Find Full Text PDFProtein Sci
September 2025
Division for Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden.
Co- and post-translational modifications can significantly impact the structure, dynamics, and function of proteins. In this study, we investigate how N-terminal acetylation affects misfolding and self-assembly of the enzyme superoxide dismutase 1 (SOD1), implicated in amyotrophic lateral sclerosis (ALS). Studies of protein inclusions in patient samples and animal models have shown that wild-type SOD1 can form amyloid fibrils even when no mutations are found in the sod1 gene.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Puls Med Association, 051885 Bucharest, Romania.
Oxidative stress is a defining and pervasive driver of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). As a molecular accelerant, reactive oxygen species (ROS) and reactive nitrogen species (RNS) compromise mitochondrial function, amplify lipid peroxidation, induce protein misfolding, and promote chronic neuroinflammation, creating a positive feedback loop of neuronal damage and cognitive decline. Despite its centrality in promoting disease progression, attempts to neutralize oxidative stress with monotherapeutic antioxidants have largely failed owing to the multifactorial redox imbalance affecting each patient and their corresponding variation.
View Article and Find Full Text PDF