Immunotherapeutic effect is restricted by the nonimmunogenic tumor phenotype and immunosuppression behaviors of tumor-associated macrophages (TAMs). In this work, a drug self-assembly (designated as CeBLZ) is fabricated based on chlorin e6 (Ce6) and BLZ945 to activate photodynamic immunotherapy through tumor immunogenic induction and tumor-associated macrophage depletion. It is found that Ce6 tends to assemble with BLZ945 without any drug excipients, which can enhance the cellular uptake, tumor penetration, and blood circulation behaviors.
View Article and Find Full Text PDFNegative therapeutic feedback of inflammation would extensively attenuate the antitumor effect of photodynamic therapy (PDT). In this work, tumor homing chimeric peptide rhomboids (designated as NP-Mel) are fabricated to improve photodynamic performance by inhibiting PDT-upregulated cyclooxygenase-2 (COX-2). The hydrophobic photosensitizer of protoporphyrin IX (PpIX) and palmitic acid are conjugated onto the neuropilin receptors (NRPs) targeting peptide motif (CGNKRTR) to obtain tumor homing chimeric peptide (Palmitic-K(PpIX)CGNKRTR), which can encapsulate the COX-2 inhibitor of meloxicam.
View Article and Find Full Text PDFAdv Healthc Mater
September 2023
Tumor cells resist oxidative damage and apoptosis by activating defense mechanisms. Herein, a self-delivery biomedicine (designated as BSC) is developed by the self-assembly of Bortezomib (BTZ), Sabutoclax (Sab) and Chlorin e6 (Ce6). Interestingly, BTZ can be coordinated with Sab to promote the assembly of uniform ternary biomedicine through non-covalent intermolecular interactions.
View Article and Find Full Text PDFIntroduction: Eleutherococcus senticosus fruit (ESF) is a natural health supplement resource that has been extensively applied as a tonic for the nervous system. The structures and neural bioactivities of triterpenoid saponins (TS), which are the major constituents of ESF, have not been comprehensively analyzed thus far.
Objective: We conducted a complete in-depth MS/MS molecular networking (MN)-based targeted analysis of TS from the crude extract of ESF and investigated its neuroprotective value.
Aim: The aim of this article was to obtain measurements of the eyeballs/globes and lacrimal glands in normal subjects using cranial computed tomography (CT) scan. Understanding the normative approximations of these measurements could help in diagnosing and evaluating orbito-ocular pathologies.
Materials And Methods: This retrospective study examined 220 globes/eyeballs and 220 lacrimal glands of 110 consecutive participants.
Biomater Sci
March 2022
Abnormal tumor microenvironments play important roles in cancer progression. In general, tumor cells are capable of upregulating glutathione (GSH) levels to maintain aberrant redox homeostasis and cause resistance to oxidative damage. Herein, we develop a photodynamic oxidizer to disrupt the redox homeostasis of tumor cells for enhanced photodynamic tumor therapy.
View Article and Find Full Text PDFAbnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors.
View Article and Find Full Text PDFACS Appl Bio Mater
November 2021
Oxygen-dependent photodynamic therapy (PDT) could exacerbate tumor hypoxia to induce the upregulation of hypoxia-inducible factor-1α (HIF-1α), which would promote tumor growth and metastasis. In this paper, a self-remedied nanomedicine is developed based on a photosensitizer and a HIF-1α inhibitor to surmount the Achilles' heel of PDT for enhanced antitumor efficacy. Specifically, the nanomedicine (designated as CYC-1) is prepared by the self-assembly of chlorine e6 (Ce6) and 3-(5'-hydroxy-methyl-2'-furyl)-1-benzylindazole (YC-1) through π-π stacking and hydrophobic interactions.
View Article and Find Full Text PDFAdv Healthc Mater
February 2022
Glutamine metabolism of tumor cells plays a crucial role in maintaining cell homeostasis and reducing oxidative damage. Herein, a valid strategy of inhibiting glutamine metabolism is proposed to amplify the oxidative damage of photodynamic therapy (PDT) to tumor cells. Specifically, the authors develop a drug co-delivery system (designated as CeV) based on chlorine e6 (Ce6) and V9302 via the self-assembly technology.
View Article and Find Full Text PDFTumor cells adapt to excessive oxidative stress by actuating reactive oxygen species (ROS)-defensing system, leading to a resistance to oxidation therapy. In this work, self-delivery photodynamic synergists (designated as PhotoSyn) are developed for oxidative damage amplified tumor therapy. Specifically, PhotoSyn are fabricated by the self-assembly of chlorine e6 (Ce6) and TH588 through π-π stacking and hydrophobic interactions.
View Article and Find Full Text PDFCinnamon oil is obtained by steam distillation from cinnamon leaves and is usually considered highly cost-effective compared to bark oil, however, which results in tons of waste cinnamon leaves (WCL) discarded annually. By using MS/MS molecular networking (MN) assisted profiling, six main chemical diversities including flavonols and flavones, phenolic acids, lactones, terpenoids, phenylpropanoids and flavanols were rapid revealed from WCL aqueous extract. 101 compounds were tentatively identified by assigning their MS/MS fragments within typical pathways under ESI-MS/MS dissociation.
View Article and Find Full Text PDFBiomaterials
June 2021
The development of photodynamic therapy (PDT) is severely limited by short half-life of singlet oxygen (O) and the hypoxic microenvironment. In this work, a plasma membrane targeted photodynamic O economizer (designated as P-POE) is developed to improve the subcellular delivery of photosensitizers and alleviate the tumor hypoxia for enhanced PDT effect. After self-assembly into nanomicelles, P-POE has a relatively high stability and a favorable photochemical performance, which are conducive to boosting the O production.
View Article and Find Full Text PDFActa Biomater
November 2020
Development of antitumor agents with high efficiency and low toxicity is one of the most important goals for biomedical research. However, most traditional therapeutic strategies were limited due to their non-specificity and abnormal tumor microenvironments, causing a poor therapeutic efficiency and severe side effects. In this paper, a tumor targeted self-synergistic nanoplatform (designated as PAO@PCN@HA) was developed for chemotherapy sensitized photodynamic therapy (PDT) against hypoxic tumors.
View Article and Find Full Text PDFNat Prod Res
September 2021
Cysestermerol A (), a rare and new stilbene sestermer, was isolated from the whole herb of . The planar and relative structures of were elucidated based on HRESIMS, one- and two-dimensional NMR analyses, and its absolute configuration was further established by electronic circular dichroism calculations. Compound obviously increased the glucose consumption in HepG2 cells equivalent to the positive control rosiglitazone and markedly inhibited the activity of -glucosidase .
View Article and Find Full Text PDFLeukemia is a group of hematologic malignancy that has unfavorable prognosis and unclear mechanisms. In recent years, advances in leukemia research encompass the discovery of novel targets in acute myeloid leukemia drug resistance, epigenetic crosstalk in mixed lineage leukemia (MLL) leukemogenesis, genetic mechanisms of aggressive NK-cell leukemia, as well as the critical role of key epigenetic regulator in acute myeloid malignancy. Remarkably, researchers revealed that the histone modifying gene SETD2 as a new tumor suppressor and therapeutic target in patients with acute myeloid leukemia.
View Article and Find Full Text PDFIn this paper, anti-plane transverse wave propagation in nanoscale periodic layered piezoelectric structures is studied. The localization factor is introduced to characterize the wave propagation behavior. The transfer matrix method based on the nonlocal piezoelectricity continuum theory is used to calculate the localization factor.
View Article and Find Full Text PDFObjective: To set up method for the quality control of carbonized Cortex Moutan.
Methods: The optimized processing technology of carbonized Cortex Moutan was selected by the time of blood coagulation. Besides, the contents of tannin, adsorbability, paeonol and peoniflorin were researched.