Publications by authors named "Lin-Ping Zhao"

Immunotherapeutic effect is restricted by the nonimmunogenic tumor phenotype and immunosuppression behaviors of tumor-associated macrophages (TAMs). In this work, a drug self-assembly (designated as CeBLZ) is fabricated based on chlorin e6 (Ce6) and BLZ945 to activate photodynamic immunotherapy through tumor immunogenic induction and tumor-associated macrophage depletion. It is found that Ce6 tends to assemble with BLZ945 without any drug excipients, which can enhance the cellular uptake, tumor penetration, and blood circulation behaviors.

View Article and Find Full Text PDF

The chemo-regulation abilities of chemotherapeutic medications are appealing to address the low immunogenicity, immunosuppressive lactate microenvironment, and adaptive immune resistance of colorectal cancer. In this work, the proteolysis targeting chimera (PROTAC) of BRD4 (dBET57) is found to downregulate colorectal cancer glycolysis through the transcription inhibition of c-Myc, which also inhibits the expression of programmed death ligand 1 (PD-L1) to reverse immune evasion and avoid adaptive immune resistance. Based on this, self-delivery nano-PROTACs (designated as DdLD NPs) are further fabricated by the self-assembly of doxorubicin (DOX) and dBET57 with the assistance of DSPE-PEG.

View Article and Find Full Text PDF

Therapy-induced DNA damage is the most common strategy to inhibit tumor cell proliferation, but the therapeutic efficacy is limited by DNA repair machinery. Carrier-free nanoproteolysis targeting chimeras (PROTACs), designed as SDNpros, have been developed to enhance photodynamic therapy (PDT) by blocking the DNA damage repair pathway through BRD4 degradation. Specifically, SDNpros are constructed through noncovalent interactions between the photosensitizer of chlorine e6 (Ce6) and PROTACs of BRD4 degrader (dBET57) via self-assembly.

View Article and Find Full Text PDF

Paraptosis is characterized by the extensive vacuolization of endoplasmic reticulum (ER) and mitochondria, which will cause the release of damage-associated molecular patterns to promote immunogenic cell death (ICD). However, the tumor can develop an immunosuppressive microenvironment to affect the ICD activation for the purpose of immune escape. Herein, a paraptosis inducer (CMN) is constructed to amplify the ICD effect for efficient immunotherapy by inhibiting the activity of indoleamine 2,3-dioxygenase (IDO).

View Article and Find Full Text PDF

Tumor cells resist oxidative damage and apoptosis by activating defense mechanisms. Herein, a self-delivery biomedicine (designated as BSC) is developed by the self-assembly of Bortezomib (BTZ), Sabutoclax (Sab) and Chlorin e6 (Ce6). Interestingly, BTZ can be coordinated with Sab to promote the assembly of uniform ternary biomedicine through non-covalent intermolecular interactions.

View Article and Find Full Text PDF

Although N4-acetylcytidine (ac4C) modification affects the stability and translation of mRNA, it is unknown whether it exists in noncoding RNAs, and its biological function is unclear. Here, nucleotide-resolution method for profiling CTC-490G23.2 ac4C sites and gain- and loss-of-function experiments revealed that N-acetyltransferase 10 (NAT10) is responsible for ac4C modification of long noncoding RNAs (lncRNAs).

View Article and Find Full Text PDF
Article Synopsis
  • This research focuses on a new self-delivery nanomedicine called CeCe, made from a photosensitizer (chlorin e6) and an autophagy promoter (celastrol) to enhance photodynamic therapy (PDT) against tumors.
  • CeCe works by producing reactive oxygen species (ROS) when exposed to light, which increases oxidative stress in tumor cells and promotes autophagy, ultimately leading to enhanced cell death.
  • In animal experiments, CeCe showed better tumor control compared to using chlorin e6 or celastrol alone, indicating a strong combined effect of promoting autophagy while delivering PDT for improved cancer treatment.
View Article and Find Full Text PDF

Lipid peroxide (LPO) is the hallmark of ferroptosis, which is a promising antitumor modality for its unique advantages. However, a cellular defense system would weaken the antitumor efficacy of ferrotherapy. Herein, a GPX4 inhibitor of ML162 and a photosensitizer of chlorine e6 (Ce6) are used to prepare the self-delivery nanomedicine (C-ML162) through hydrophobic and electrostatic interactions to enhance ferroptosis by photodynamic therapy (PDT).

View Article and Find Full Text PDF

Photodynamic therapy (PDT) can generate reactive oxygen species (ROS) to cause cell apoptosis and induce immunogenic cell death (ICD) to activate immune response, becoming a promising antitumor modality. However, the overexpressions of indoleamine 2,3-dioxygenase (IDO) and programmed cell death ligand 1 (PD-L1) on tumor cells would reduce cytotoxic T cells infiltration and inhibit the immune activation. In this paper, a simple but effective nanosystem is developed to solve these issues for enhanced photodynamic immunotherapy.

View Article and Find Full Text PDF

Abnormal tumor metabolism causes the hypoxic microenvironment, which greatly limits the efficacy of photodynamic therapy (PDT). In this work, a strategy of metabolic reprogramming is proposed to economize O for enhanced PDT against hypoxic tumors. The carrier-free O -economizer (designated as LonCe) is prepared based on the metabolic antitumor drug of Lonidamine (Lon) and the photosensitizer of chlorin e6 (Ce6).

View Article and Find Full Text PDF

Abnormal tumor microenvironments play important roles in cancer progression. In general, tumor cells are capable of upregulating glutathione (GSH) levels to maintain aberrant redox homeostasis and cause resistance to oxidative damage. Herein, we develop a photodynamic oxidizer to disrupt the redox homeostasis of tumor cells for enhanced photodynamic tumor therapy.

View Article and Find Full Text PDF

Abnormal metabolism of cancer cells results in complex tumor microenvironments (TME), which play a dominant role in tumor metastasis. Herein, self-delivery ternary bioregulators (designated as TerBio) are constructed for photodynamic amplified immunotherapy against colorectal cancer by TME reprogramming. Specifically, carrier-free TerBio are prepared by the self-assembly of chlorine e6, SB505124 (SB), and lonidamine (Lon), which exhibit improved tumor accumulation, tumor penetration, and cellular uptake behaviors.

View Article and Find Full Text PDF

Glutamine metabolism of tumor cells plays a crucial role in maintaining cell homeostasis and reducing oxidative damage. Herein, a valid strategy of inhibiting glutamine metabolism is proposed to amplify the oxidative damage of photodynamic therapy (PDT) to tumor cells. Specifically, the authors develop a drug co-delivery system (designated as CeV) based on chlorine e6 (Ce6) and V9302 via the self-assembly technology.

View Article and Find Full Text PDF
Article Synopsis
  • Multidrug resistance (MDR) is a major obstacle in effective cancer chemotherapy, leading to treatment failures.
  • Researchers developed a self-delivery nanomedicine called α-TD, combining α-tocopherol succinate (α-TOS) and doxorubicin (DOX), to enhance drug delivery and combat MDR.
  • α-TD increases drug retention in cancer cells by generating reactive oxygen species (ROS) and disrupting mitochondrial function, ultimately showing a strong anti-tumor effect with low toxicity in vivo.
View Article and Find Full Text PDF

Self-delivery of photosensitizer and immune modulator to tumor site is highly recommendable to improve the photodynamic immunotherapy yet remains challenging. Herein, self-delivery photoimmune stimulators (designated as iPSs) are developed for photodynamic sensitized tumor immunotherapy. Carrier-free iPSs are constructed by optimizing the noncovalent interactions between the pure drugs of chlorine e6 (Ce6) and NLG919, which avoid the excipients-raised toxicity and immunogenicity.

View Article and Find Full Text PDF

Development of antitumor agents with high efficiency and low toxicity is one of the most important goals for biomedical research. However, most traditional therapeutic strategies were limited due to their non-specificity and abnormal tumor microenvironments, causing a poor therapeutic efficiency and severe side effects. In this paper, a tumor targeted self-synergistic nanoplatform (designated as PAO@PCN@HA) was developed for chemotherapy sensitized photodynamic therapy (PDT) against hypoxic tumors.

View Article and Find Full Text PDF

Tumor hypoxia is the Achilles heel of oxygen-dependent photodynamic therapy (PDT), and tremendous challenges are confronted to reverse the tumor hypoxia. In this work, an oxidative phosphorylation inhibitor of atovaquone (ATO) and a photosensitizer of chlorine e6 (Ce6)-based self-delivery nanomedicine (designated as ACSN) were prepared via π-π stacking and hydrophobic interaction for O-economized PDT against hypoxic tumors. Specifically, carrier-free ACSN exhibited an extremely high drug loading rate and avoided the excipient-induced systemic toxicity.

View Article and Find Full Text PDF

Targeted delivery of the drug to its therapeutically active site with low immunogenicity and system toxicity is critical for optimal tumor therapy. In this paper, exosomes as naturally-derived nano-sized membrane vesicles are engineered by chimeric peptide for plasma membrane and nucleus targeted photosensitizer delivery and synergistic photodynamic therapy (PDT). Importantly, a dual-stage light strategy is adopted for precise PDT by selectively and sequentially destroying the plasma membrane and nucleus of tumor cells.

View Article and Find Full Text PDF

An abnormal pH microenvironment results from the development of tumors, and also affects the therapeutic efficiency of anti-tumor drugs. In this work, a Förster resonance energy transfer (FRET)-based theranostic fluorescent nanoprobe was constructed for simultaneous ratiometric pH sensing and tumor-targeted photodynamic therapy. Based on the FRET process between rhodamine B and protoporphyrin IX (PpIX), the fabricated nanoprobe exhibited excellent pH responsiveness in both solutions and live cells with the ratiometric fluorescence changes.

View Article and Find Full Text PDF

Targeted drug delivery with precisely controlled drug release and activation is highly demanding and challenging for tumor precision therapy. Herein, a biomimetic cascade nanoreactor (designated as Mem@GOx@ZIF-8@BDOX) is constructed for tumor targeted starvation therapy-amplified chemotherapy by assembling tumor cell membrane cloak and glucose oxidase (GOx) onto zeolitic imidazolate framework (ZIF-8) with the loading prodrug of hydrogen peroxide (HO)-sensitive BDOX. Biomimetic membrane camouflage affords superior immune evasion and homotypic binding capacities, which significantly enhance the tumor preferential accumulation and uptake for targeted drug delivery.

View Article and Find Full Text PDF

In this paper, a self-delivery chimeric peptide PpIX-PEG -KVPRNQDWL is designed for photodynamic therapy (PDT) amplified immunotherapy against malignant melanoma. After self-assembly into nanoparticles (designated as PPMA), this self-delivery system shows high drug loading rate, good dispersion, and stability as well as an excellent capability in producing reactive oxygen species (ROS). After cellular uptake, the ROS generated under light irradiation could induce the apoptosis and/or necrosis of tumor cells, which would subsequently stimulate the anti-tumor immune response.

View Article and Find Full Text PDF

Mitochondria and cell membrane play important roles in maintaining cellular activity and stability. Here, a single-agent self-delivery chimeric peptide based nanoparticle (designated as M-ChiP) was developed for mitochondria and plasma membrane dual-targeted photodynamic tumor therapy. Without additional carrier, M-ChiP possessed high drug loading efficacy as well as the excellent ability of producing reactive oxygen species (ROS).

View Article and Find Full Text PDF

The phosphorus activation coefficient (PAC, the ratio of available P to total P) is an important indicator of soil P availability and the transformation of P fractions. Understanding the details of the PAC is useful to estimate soil available P status and to provide P management guidance. In this research, soils from five long-term (23 years) fertilization treatments in three croplands were selected to examine the relationships between the PAC and P fractions and to analyse the influencing factors.

View Article and Find Full Text PDF