1,186 results match your criteria: "National University of Science and Technology MISIS[Affiliation]"

Thermoelectric properties of BiPbCuSeO oxyselenides.

Phys Chem Chem Phys

May 2024

Academic Research Center for Energy Efficiency, National University of Science and Technology MISIS, Leninsky Av. 4, Moscow, 119049, Russia.

In this work, BiPbCu SeO ( = 0, 0.02, 0.06, and 0.

View Article and Find Full Text PDF

Local drug delivery systems based on bioceramics ensure safe and effective treatment of bone defects and anticancer therapy. A promising drug delivery scaffold material for bone treatment applications is diopside (CaMgSiO) which is bioactive, degradable, and possesses drug-release ability. Currently, in vitro assessment of drug release from biomaterials is performed mostly on a 2D cell monolayer.

View Article and Find Full Text PDF

The gasification of carbon with O, CO, and HO oxidants plays an important role in several energy-based applications. As most of the industrial gasification processes are conducted under mixed-atmosphere conditions, the oxidation of carbon in binary oxidant mixtures becomes crucially important. Using reactive force-field (ReaxFF) potentials, extensive MD simulations were carried out on the oxidation behavior of graphene in mixed O/HO and O/CO environments for a range of gas compositions and temperatures.

View Article and Find Full Text PDF

In this study, we compared the conversion of polyethylene terephthalate (PET) into porous carbons for water purification using pyrolysis and post-activation with KOH. Pyrolysis was conducted at 400-850 °C, followed by KOH activation at 850 °C for samples pyrolyzed at 400, 650, and 850 °C. Both pyrolyzed and post-activated carbons showed high specific surface areas, up to 504.

View Article and Find Full Text PDF

The chemical structure of the surface of glass fibers, including silanized fibers, was studied. Highly efficient heat-resistant composites were obtained by impregnating silanized glass fiber with a polysulfone solution, and the effect of modification of the surface of glass fibers on the physical, mechanical and thermophysical properties of the composite materials was studied. As a result of the study, it was found that the fiber-to-polymer ratio of 70/30 wt.

View Article and Find Full Text PDF

In this study, the interlaminar fracture toughness and impact strength of polyethersulfone reinforced with continuous carbon fibers were studied. Interlaminar fracture toughness tests were performed using the double cantilever beam method. It was shown that surface modification using the thermal oxidation method of the carbon fibers can strongly increase the interlaminar fracture toughness of the obtained composites.

View Article and Find Full Text PDF

This article will focus on the issue of protection against the pathogenic biofilm development on steel surfaces within the food sectors, highlighting steel's prominence as a material choice in these areas. Pathogenic microorganism-based biofilms present significant health hazards in the food industry. Current scientific research offers a variety of solutions to the problem of protecting metal surfaces in contact with food from the growth of pathogenic microorganisms.

View Article and Find Full Text PDF

The article presents the possibility of increasing the water resistance of gypsum binders (GBs) obtained based on synthetic gypsum by introducing additives derived from industrial wastes. Regularities were obtained for the influence of the type and amount of additives on the water/gypsum ratio (W/G), strength indicators and water resistance of high-strength GB. The introduction of a single-component additive to improve water resistance does not have a significant effect.

View Article and Find Full Text PDF

Local recurrence after surgical and therapeutic treatment remains a significant clinical problem in oncology. Recurrence may be due to imperfections in existing therapies, particularly chemotherapy. To improve antitumor activity and prevent local cancer recurrence while keeping toxicity at acceptable levels, we have developed and demonstrated a biodegradable local chemotherapy platform that provides controlled and prolonged drug release.

View Article and Find Full Text PDF

This work focused on the production of the MoAlB MAB phase through self-propagating, high-temperature synthesis in the thermal explosion mode. The influence of the method of a Mo-Al-B-powder reaction mixture preparation on the combustion temperature, mechanism, and stages of the MAB phase formation in the combustion process was investigated. The combustion temperatures of the mixtures obtained in the rotary ball mill and high-speed planetary ball mill were 1234 and 992 °C, respectively.

View Article and Find Full Text PDF

New nitrosonium manganese(II) nitrate, (NO)Mn(NO), has been synthesized and structurally characterized. In the temperature range of 45-298 K, the crystal is hexagonal (centrosymmetric sp. gr.

View Article and Find Full Text PDF

The concept of high-entropy oxides has triggered extensive research of this novel class of materials because their numerous functional properties are usually not mere linear combinations of those of the components. Here, we introduce the new series of compositionally complex honeycomb-layered magnets NaLiTSbO (T = CuNiCo). An unusual feature of the system is its nonmonotonous dependences of the monoclinic lattice parameters and β on .

View Article and Find Full Text PDF

Mechanical properties of living cells play a crucial role in a wide range of biological functions and pathologies, including atherosclerosis. We used low-stress Scanning Ion-Conductance Microscopy (SICM) correlated with confocal imaging and demonstrated the topographical changes and mechanical properties alterations in EA.hy926 and THP-1 exposed to LDL extracted from CVD patients' blood samples.

View Article and Find Full Text PDF

Artificial communication with the brain through peripheral nerve stimulation shows promising results in individuals with sensorimotor deficits. However, these efforts lack an intuitive and natural sensory experience. In this study, we design and test a biomimetic neurostimulation framework inspired by nature, capable of "writing" physiologically plausible information back into the peripheral nervous system.

View Article and Find Full Text PDF

The lattice Schwinger model, the discrete version of QED in 1+1 dimensions, is a well-studied test bench for lattice gauge theories. Here, we study the fractal properties of this model. We reveal the self-similarity of the ground state, which allows us to develop a recurrent procedure for finding the ground-state wave functions and predicting ground-state energies.

View Article and Find Full Text PDF

In this work, thermodynamic calculations for α + β Type Ti-Fe-Cu-Sn alloy were carried out by the Thermo-Calc software. Powders from this alloy were obtained by plasma sputtering and used for subsequent 3D printing of experimental samples. The effect of various selective laser melting (SLM) parameters on porosity and hot cracking susceptibility as well as the electrochemical characteristics of the alloy have been studied.

View Article and Find Full Text PDF

We have studied the proximity effect in an SF1S1F2s superconducting spin valve consisting of a massive superconducting electrode (S) and a multilayer structure formed by thin ferromagnetic (F1,2) and superconducting (S1, s) layers. Within the framework of the Usadel equations, we have shown that changing the mutual orientation of the magnetization vectors of the F1,2 layers from parallel to antiparallel serves to trigger superconductivity in the outer thin s-film. We studied the changes in the pair potential in the outer s-film and found the regions of parameters with a significant spin-valve effect.

View Article and Find Full Text PDF

Background: The centrosome is the main center of the organization of microtubules (MT) in the cell, the origin for the formation of flagella and cilia, as well as the site of many regulatory intracellular processes. In diploid cells, the centrosome includes two centrioles connected to some additional structures and surrounded by pericentriolar material.

Methods: The ultrastructure of the cells was studied using transmission electron microscopy on serial ultrathin sections.

View Article and Find Full Text PDF

This work examined the influence of zirconium concentration on barium titanate (BZT) BaZrTiO, with ( = 0, 0.15, 0.50, 0.

View Article and Find Full Text PDF

Novel nanomaterials used for wound healing should have many beneficial properties, including high biological and antibacterial activity. Immobilization of proteins can stimulate cell migration and viability, and implanted Ag ions provide an antimicrobial effect. However, the ion implantation method, often used to introduce a bactericidal element into the surface, can lead to the degradation of vital proteins.

View Article and Find Full Text PDF

This paper presents data on the macroscopic polarization of copolymer films of vinylidene fluoride with tetrafluoroethylene obtained with a modified apparatus assembled according to the Sawyer-Tower Circuit. The kinetics of the polarization process were analyzed taking into consideration the contributions of both bound and quasi-free (impurity) charges. It was shown that an "abnormal" decrease in conductivity was observed in fields near the coercive fields.

View Article and Find Full Text PDF

The investigation of the features of laser control over the state of nanoscale objects in solid materials is an urgent task of condensed matter physics. We experimentally established the potential for the simultaneous enhancement of hardness and resistance to surface cracking in a titanium alloy due to selective laser irradiation. The regularities of selective heating near nanopores and the influence of the nanopore system on the features of isotherm propagation have been revealed.

View Article and Find Full Text PDF

Neural population dynamics reveals disruption of spinal circuits' responses to proprioceptive input during electrical stimulation of sensory afferents.

Cell Rep

February 2024

Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pitt

While neurostimulation technologies are rapidly approaching clinical applications for sensorimotor disorders, the impact of electrical stimulation on network dynamics is still unknown. Given the high degree of shared processing in neural structures, it is critical to understand if neurostimulation affects functions that are related to, but not targeted by, the intervention. Here, we approach this question by studying the effects of electrical stimulation of cutaneous afferents on unrelated processing of proprioceptive inputs.

View Article and Find Full Text PDF

The paper is devoted to the study of thermal and mechanical behavior and structural features of the polysulfone solution impregnated unidirectional carbon fiber yarns depending on fabrication conditions and appearance for optimum production method of the composites. The effect of producing conditions, such as polysulfone solution concentration, drying and post-heating temperatures, and the residual solvent content on the structure, mechanical, and thermal properties of the carbon fiber-reinforced composites was studied. The polysulfone solution impregnated carbon fiber yarns show relatively high mechanical properties, realizing up to 80% of the carbon fibers' tensile strength, which can be attributed to good wettability and uniform polymer matrix distribution throughout the entire volume of the composites.

View Article and Find Full Text PDF

TiCT MXene is one of the most comprehensively studied 2D materials in terms of its adsorptive, transport, and catalytic properties, cytotoxic performance, etc. Still, conventional MXene synthesis approaches provide low single-flake MXene yield and frequently uncontrollable properties, demanding further post-processing. The MXene family also lacks magnetism, which is helpful for producing effective nanoadsorbents as their magnetic decantation is the cheapest and most convenient way to remove the spent adsorbent from water.

View Article and Find Full Text PDF