Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Local recurrence after surgical and therapeutic treatment remains a significant clinical problem in oncology. Recurrence may be due to imperfections in existing therapies, particularly chemotherapy. To improve antitumor activity and prevent local cancer recurrence while keeping toxicity at acceptable levels, we have developed and demonstrated a biodegradable local chemotherapy platform that provides controlled and prolonged drug release. The platform consists of a polycaprolactone (PCL) substrate, which provides the structural integrity of the platform and the predominant unidirectional drug release, and a thin multilayer coating (∼200 nm) containing doxorubicin (DOX). The coating is an electrostatic complex obtained by the layer-by-layer (LbL) assembly and consists of natural polyelectrolytes [poly-γ-glutamic acid (γ-PGA) and chitosan (CS) or poly-l-lysine (PLL)]. To improve the release stability, an ionic conjugate of DOX and γ-PGA was prepared and incorporated into the multilayer coating. By varying the structure of the coating by adding empty (without DOX) bilayers, we were able to control the kinetics of drug release. The resulting platforms contained equal numbers of empty bilayers and DOX-loaded bilayers (15 + 15 or 30 + 30 bilayers) with a maximum loading of 566 ng/cm. The platforms demonstrated prolonged and fairly uniform drug release for more than 5 months while retaining antitumor activity in vitro on ovarian cancer cells (SKOV-3). The empty platforms (without DOX) showed good cytocompatibility and no cytotoxicity to human fibroblasts and SKOV-3 cells. This study presents the development of a local chemotherapy platform consisting of a PCL-based substrate which provides structural stability and a biodegradable polyelectrolyte layered coating which combines layers containing a polyanion ionic complex with DOX with empty bilayers to ensure prolonged and controlled drug release. Our results may provide a basis for improving the efficacy of chemotherapy using drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsabm.4c00078DOI Listing

Publication Analysis

Top Keywords

drug release
20
local chemotherapy
12
chemotherapy platform
12
biodegradable local
8
prolonged controlled
8
antitumor activity
8
substrate structural
8
multilayer coating
8
empty bilayers
8
release
7

Similar Publications

Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.

View Article and Find Full Text PDF

Modern anesthesia, intensive care, and emergency medicine rely heavily on neuromuscular blocking agents (NMBAs), first introduced in 1942. These agents not only facilitate endotracheal intubation but also improve surgical conditions by suppressing muscle responses to stimuli. NMBAs function via depolarizing (eg, succinylcholine) or non-depolarizing mechanisms.

View Article and Find Full Text PDF

This review highlights the integration of drug repurposing and nanotechnology-driven delivery strategies as innovative approaches to enhance the antifungal activity of statins against mucosal candidiasis, providing a framework for future translational research and clinical application. The rising prevalence of antifungal resistance and virulence factors of Candida albicans underscore the limitations of current therapies. Statins, commonly used as lipid-lowering agents, have emerged as attractive repurposed drug candidates due to their ability to interfere with fungal ergosterol biosynthesis and Ras-mediated signaling pathways.

View Article and Find Full Text PDF

Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.

View Article and Find Full Text PDF