1,037 results match your criteria: "Max Planck Institute for Dynamics and Self-Organization[Affiliation]"

Small-scale turbulence can be comprehensively described in terms of velocity gradients, which makes them an appealing starting point for low-dimensional modeling. Typical models consist of stochastic equations based on closures for nonlocal pressure and viscous contributions. The fidelity of the resulting models depends on the accuracy of the underlying modeling assumptions.

View Article and Find Full Text PDF
Article Synopsis
  • To effectively understand how infectious diseases spread, we need to include human behavior in our models, as current research lacks a cohesive integration of these two aspects.
  • The paper presents a new framework that connects infectious disease dynamics with behavior dynamics through four distinct update functions, but highlights a diversity in their application and a lack of model comparisons, making it hard for researchers to create tailored models.
  • The authors suggest using 'influence-response functions' to address disagreements about human behavior assumptions in models, and emphasize the importance of social science methods to enhance future research on the interplay between disease and behavior.
View Article and Find Full Text PDF

Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts.

View Article and Find Full Text PDF

Musical sequences are correlated dynamical processes that may differ depending on musical styles. We aim to quantify the correlations through power spectral analysis of pitch sequences in a large corpus of musical compositions as well as improvised performances. Using a multitaper method we extend the power spectral estimates down to the smallest possible frequencies optimizing the tradeoff between bias and variance.

View Article and Find Full Text PDF

Biological microswimmers alter their swimming trajectories to follow the direction of an applied electric field, exhibiting electrotaxis. We show that synthetic active droplet microswimmers also autonomously change swimming trajectories in microchannels, even undergoing "U-turns," in response to an electric field, mimicking electrotaxis. We exploit such electrotaxis, in the presence of an external flow, to robustly tune the swimming trajectory of active droplets between wall-adjacent, oscillatory, and channel centerline swimming.

View Article and Find Full Text PDF

Inertia Drives Concentration-Wave Turbulence in Swimmer Suspensions.

Phys Rev Lett

October 2024

Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, Telangana, India.

We discover an instability mechanism in suspensions of self-propelled particles that does not involve active stress. Instead, it is driven by a subtle interplay of inertia, swimmer motility, and concentration fluctuations, through a crucial time lag between the velocity and the concentration field. The resulting time-persistent state seen in our high-resolution numerical simulations consists of self-sustained waves of concentration and orientation, transiting from regular oscillations to wave turbulence.

View Article and Find Full Text PDF

Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order.

View Article and Find Full Text PDF

We offer a new model for the heat transfer and the turbulence intensity in strongly driven Rayleigh-Bénard turbulence (the so-called ultimate regime), which in contrast to hitherto models is consistent with the new mathematically exact heat transfer upper bound of Choffrut et al. [Upper bounds on Nusselt number at finite Prandtl number, J. Differ.

View Article and Find Full Text PDF

Crossover interference is a phenomenon that affects the number and positioning of crossovers in meiosis and thus affects genetic diversity and chromosome segregation. Yet, the underlying mechanism is not fully understood, partly because quantification is difficult. To overcome this challenge, we introduce the interference length L that quantifies changes in crossover patterning due to interference.

View Article and Find Full Text PDF

Multivesicular bodies are key endosomal compartments implicated in cellular quality control through their degradation of membrane-bound cargo proteins. The ATP-consuming ESCRT protein machinery mediates the capture and engulfment of membrane-bound cargo proteins through invagination and scission of multivesicular-body membranes to form intraluminal vesicles. Here we report that the plant ESCRT component FREE1 forms liquid-like condensates that associate with membranes to drive intraluminal vesicle formation.

View Article and Find Full Text PDF

We report psychophysical experiments and time series analyses to investigate sensorimotor tapping strength fluctuations in human periodic tapping with and without a metronome. The power spectral density of tapping strength fluctuations typically decays in an inverse power law (1/fβ-noise) associated with long-range correlations, i.e.

View Article and Find Full Text PDF

The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function.

J Physiol

October 2024

Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany.

Article Synopsis
  • The synaptic vesicle cluster (SVC) is critical for releasing neurotransmitters at chemical synapses and also helps regulate various cofactors involved in exo- and endocytosis.
  • It contains various molecules important for synaptic processes, including cytoskeletal elements and adhesion proteins, and influences the positioning and activity of key organelles like mitochondria.
  • Changes in the size of the SVC may align with alterations in the postsynaptic area, indicating that it plays a central role in synchronizing pre- and postsynaptic functions, which warrants further research into its regulatory mechanisms.
View Article and Find Full Text PDF

The retina transforms patterns of light into visual feature representations supporting behaviour. These representations are distributed across various types of retinal ganglion cells (RGCs), whose spatial and temporal tuning properties have been studied extensively in many model organisms, including the mouse. However, it has been difficult to link the potentially nonlinear retinal transformations of natural visual inputs to specific ethological purposes.

View Article and Find Full Text PDF

Particle chirality does not matter in the large-scale features of strong turbulence.

J Fluid Mech

September 2024

Physics of Fluids Group and Max Planck Center for Complex Fluid Dynamics, Department of Science and Technology, J.M. Burgers Center for Fluid Dynamics, and MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.

We use three-dimensional direct numerical simulations of homogeneous isotropic turbulence in a cubic domain to investigate the dynamics of heavy, chiral, finite-size inertial particles and their effects on the flow. Using an immersed-boundary method and a complex collision model, four-way coupled simulations have been performed and the effects of particle-to-fluid density ratio, turbulence strength, and particle volume fraction have been analysed. We find that freely falling particles on the one hand add energy to the turbulent flow but, on the other hand, they also enhance the flow dissipation: depending on the combination of flow parameters, the former or the latter mechanism prevails, thus yielding enhanced or weakened turbulence.

View Article and Find Full Text PDF

Stealthy and hyperuniform isotropic photonic band gap structure in 3D.

PNAS Nexus

September 2024

Advanced Technology Institute and School of Mathematics and Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.

In photonic crystals, the propagation of light is governed by their photonic band structure, an ensemble of propagating states grouped into bands, separated by photonic band gaps. Due to discrete symmetries in spatially strictly periodic dielectric structures their photonic band structure is intrinsically anisotropic. However, for many applications, such as manufacturing artificial structural color materials or developing photonic computing devices, but also for the fundamental understanding of light-matter interactions, it is of major interest to seek materials with long range nonperiodic dielectric structures which allow the formation of photonic band gaps.

View Article and Find Full Text PDF

We present an experimental study on detachment characteristics of hydrogen bubbles during electrolysis. Using a transparent (Pt or Ni) electrode enables us to directly observe the bubble contact line and bubble size. Based on these quantities we determine other parameters such as the contact angle and volume through solutions of the Young-Laplace equation.

View Article and Find Full Text PDF

Fluid flows are intrinsically characterized via the topology and dynamics of underlying vortex lines. Turbulence in common fluids like water and air, mathematically described by the incompressible Navier-Stokes equations (INSE), engenders spontaneous self-stretching and twisting of vortex lines, generating a complex hierarchy of structures. While the INSE are routinely used to describe turbulence, their regularity remains unproven; the implicit assumption being that the self-stretching is ultimately regularized by viscosity, preventing any singularities.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified 38 genes that influence αSyn propagation, focusing on two genes, which help understand how αSyn interacts with lipids and forms inclusions resembling Lewy Bodies.
  • * Analysis of gene expression changes after manipulating these genes revealed a connection to increased risk variants in Parkinson's patients, supporting a model where genetic factors disrupt αSyn regulation, leading to disease progression.
View Article and Find Full Text PDF

We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects, spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate radially outward traveling waves and thus break the parity and time-reversal symmetry.

View Article and Find Full Text PDF

Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

A core challenge for the brain is to process information across various timescales. This could be achieved by a hierarchical organization of temporal processing through intrinsic mechanisms (e.g.

View Article and Find Full Text PDF

Efficiency of an autonomous, dynamic information engine operating on a single active particle.

Phys Rev E

July 2024

Department of Mathematics and Centre of Complexity Science, Imperial College London, South Kensington, London SW7 2BZ, United Kingdom.

The Szilard engine stands as a compelling illustration of the intricate interplay between information and thermodynamics. While at thermodynamic equilibrium, the apparent breach of the second law of thermodynamics was reconciled by Landauer and Bennett's insights into memory writing and erasure, recent extensions of these concepts into regimes featuring active fluctuations have unveiled the prospect of exceeding Landauer's bound, capitalizing on information to divert free energy from dissipation towards useful work. To explore this question further, we investigate an autonomous dynamic information engine, addressing the thermodynamic consistency of work extraction and measurement costs by extending the phase space to incorporate an auxiliary system, which plays the role of an explicit measurement device.

View Article and Find Full Text PDF

We propose an extension to the inertial spin model (ISM) of flocking and swarming. The model has been introduced to explain certain dynamic features of swarming (second sound, a lower than expected dynamic critical exponent) while preserving the mechanism for onset of order provided by the Vicsek model. The inertial spin model (ISM) has only been formulated with an imitation ("ferromagnetic") interaction between velocities.

View Article and Find Full Text PDF

Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and dynamical properties, including the full range of fluidlike to solidlike behavior, and non-Gaussian positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of metabolic clusters, which are the main drivers of nonequilibrium activity in living systems.

View Article and Find Full Text PDF

Living cells have the ability to detect electric fields and respond to them with directed migratory movements. Many proteomic approaches have been adopted in the past to identify the molecular mechanism behind this cellular phenomenon. However, how the cells sense the electric stimulus and transduce it into directed cell migration is still under discussion.

View Article and Find Full Text PDF