224 results match your criteria: "Institute of Polymer Science and Technology[Affiliation]"
Acta Biomater
April 2017
Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain.
Unlabelled: The aim of this work is the development of highly protective agents to be administered locally within the middle ear to avoid cisplatin-induced ototoxicity, which affects to 100% of the clinical patients at ultra-high concentrations (16mg/kg). The protective agents are based on polymeric nanoparticles loaded with dexamethasone or α-tocopheryl succinate as anti-inflammarory and anti-apoptotic molecules. Dexamethasone and α-tocopheryl succinate are poorly soluble in water and present severe side effects when systemic administered during long periods of time.
View Article and Find Full Text PDFMacromol Rapid Commun
March 2017
Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, E-28006, Madrid, Spain.
Monoamino functionalized ethylenoxide (EO)/propylenoxide oligomers (Jeffamine) are linked chemically to poly(vinyl chloride) (PVC) using trichlorotriazine chemistry in order to prepare nonmigrating internally plasticized materials. The dependence of the plasticizer efficiency on both the number of anchoring points to the chains and the PVC/plasticizer compatibility is investigated using oligomers of different molecular weight and hydrophilic-hydrophobic balance. Hydrophilic oligomers (containing predominantly EO) of molecular weights between 2000 and 5000 g mol exhibit excellent plasticizer efficiency, nearly identical to di-2-ethylhexylphthalate (DOP) in conventional PVC/DOP mixtures and may therefore be used as nonmigrating equivalents for DOP.
View Article and Find Full Text PDFBiomater Sci
October 2016
Division of Tissue Engineering &Biophotonics. Dental Institute King's College London, UK and Institute of Polymer Science and Technology, CSIC and CIBER-BBN, Spain.
Strontium folate (SrFO) is a recently developed bone promoting agent with interest in medical and pharmaceutical fields due to its improved features in comparison to current strontium based therapies for osteoporosis and other bone diseases. In this work SrFO derivative was synthesized and loaded into biohybrid scaffolds obtained through lyophilisation of semi-interpenetrating networks of chitosan polyethylene glycol dimethacrylate and beta tri-calcium phosphate (βTCP) fabricated using free radical polymerization. The scaffolds were seeded with pluripotent stem cells obtained from human dental pulp and their potential to regenerate bone tissues were assessed using a critical sized defect model of calvaria in rats and compared with those obtained without SrFO.
View Article and Find Full Text PDFMacromol Biosci
December 2016
Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006, Madrid, Spain.
Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action.
View Article and Find Full Text PDFAAPS PharmSciTech
May 2017
Polymer Functionalization Group, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, Madrid, 28006, Spain.
Three types of chitosan-based films have been prepared and evaluated: a non-modified chitosan film bearing cationizable aliphatic amines and two films made of N-sulfopropyl chitosan derivatives bearing both aliphatic amines and negative sulfonate groups at different ratios. Cell adhesion and proliferation on chitosan films of C2C12 pre-myoblastic cells and B16 cells as tumoral model have been tested. A differential cell behavior has been observed on chitosan films due to their different surface modification.
View Article and Find Full Text PDFPolymers (Basel)
July 2016
Department of Astronautics, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy.
Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates.
View Article and Find Full Text PDFPLoS One
July 2017
Networking Biomedical Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
Background: Cyanoacrylate(CA)-based tissue adhesives, although not widely used, are a feasible option to fix a mesh during abdominal hernia repair, due to its fast action and great bond strength. Their main disadvantage, toxicity, can be mitigated by increasing the length of their alkyl chain. The objective was to assess the in vitro cytotoxicity and in vivo biocompatibility in hernia repair of CAs currently used in clinical practice (Glubran(n-butyl) and Ifabond(n-hexyl)) and a longer-chain CA (OCA(n-octyl)), that has never been used in the medical field.
View Article and Find Full Text PDFSurf Sci
September 2015
ESISNA Group, Dept. Surfaces, Coatings and Molecular Astrophysics, Institute of Material Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
We have deposited 4-aminophenol on Pt(111) surfaces in ultra-high vacuum and studied the strength of its adsorption through a combination of STM, LEED, XPS and calculations. Although an ordered (2√3×2√3)R30° phase appears, we have observed that molecule-substrate interaction dominates the adsorption geometry and properties of the system. At RT the high catalytic activity of Pt induces aminophenol to lose the H atom from the hydroxyl group, and a proportion of the molecules lose the complete hydroxyl group.
View Article and Find Full Text PDFRSC Adv
April 2016
Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave., Boulder, 80303, CO, USA; Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Denver, 12800 East 19 Ave., Aurora, 80045, CO, USA.
An FT-NIR spectrometer, rheometer and fluorescence spectrophotometer were coupled for the real-time monitoring of polymerization reactions, allowing the simultaneous tracking of polymerization kinetics, storage modulus as well as fluorescence. In this study, a methacrylate functionalized dansyl chromophore (DANSMA) was synthesized and two different nanogels were made from urethane dimethacrylate and isobornyl methacrylate. Two series of resin formulations were prepared using the DANSMA probe, ethoxylated bisphenol A dimethacrylate as the matrix monomer, Irgacure 651 as the initiator and the dispersed, monomer-swollen nanogels to give clear UV-curable resins.
View Article and Find Full Text PDFJ Mater Sci Mater Med
June 2016
Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council, Mostra d'Oltremare Pad. 20, Viale J. F. Kennedy 54, 80125, Naples, Italy.
The aim of this work was to synthesize semi-interpenetrating polymer networks (semi-IPNs) by free radical polymerization of N-isopropylacrylamide [poly (NIPAAm)], in the presence of chitosan (CHI), and to study the effect of pH and temperature changes on their rheological and swelling properties. The semi-IPNs are thermally stable up to about 400 °C and the presence of CHI increases the thermal degradation rate compared to bare poly (NIPAAm). The prepared systems presents a well-defined porosity and proved to be non-toxic, in vitro, on human embryonic skin fibroblast, thus offering appropriate support for cell proliferation.
View Article and Find Full Text PDFChemMedChem
May 2016
Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007, Tarragona, Spain.
We report the synthesis and biological evaluation of a series of (-)-englerin A analogues obtained along our previously reported synthetic route based on a stereoselective gold(I) cycloaddition process. This synthetic route is a convenient platform to access analogues with broad structural diversity and has led us to the discovery of unprecedented and easier-to-synthesize derivatives with an unsaturation in the cyclopentyl ring between C4 and C5. We also introduce novel analogues in which the original isopropyl motif has been substituted with cyclohexyl, phenyl, and cyclopropyl moieties.
View Article and Find Full Text PDFPolym Chem
January 2016
Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, Juan de la Cierva, 3, 28006 Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain.
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound. However, the major factor limiting the use of α-TOS is its low solubility in physiological media. To overcome this problem, the aim of this work is the preparation of new polymeric and active α-TOS-based nanovehicle with a precise control over its macromolecular architecture.
View Article and Find Full Text PDFChem Commun (Camb)
March 2016
Department of Energy Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea.
A facile two-step synthesis beginning with commercial monomers to prepare copolyimides by Tröger's Base (TB) formation provides membranes for the first time with tunable gas transport relative to hydrogen separations, CO2 plasticization resistance, and good mechanical and thermal properties.
View Article and Find Full Text PDFMacromol Rapid Commun
April 2016
Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain.
The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of β-CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N-ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated β-CDs (HCDSt and MeCDSt, respectively).
View Article and Find Full Text PDFNanomedicine
May 2016
Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/ Juan de la Cierva, Madrid, Spain; Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Spain.
Unlabelled: 6α-Methylprednisolone-loaded surfactant-free nanoparticles have been developed to palliate cisplatin ototoxicity. Nanoparticles were based on two different amphiphilic pseudo-block copolymers obtained by free radical polymerization and based on N-vinyl pyrrolidone and a methacrylic derivative of α-tocopheryl succinate or α-tocopherol. Copolymers formed spherical nanoparticles by nanoprecipitation in aqueous media that were able to encapsulate 6α-methylprednisolone in their inner core.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2016
Department of Biochemistry and Molecular Biology I, Faculty of Chemistry, Universidad Complutense, IdISSC, 28040 Madrid, Spain. Electronic address:
The differences in the response of human Saos-2 osteoblasts to nanocomposites of poly(vinyl alcohol) (PVA) and 1.5wt.% graphene oxide (GO) prepared by covalent linking (PVA/GO-c) and simple blending (PVA/GO-m) have been evaluated through different biocompatibility parameters.
View Article and Find Full Text PDFMacromol Biosci
March 2016
Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006, Madrid, Spain.
The aim of this work is the preparation of an active nanovehicle for the effective administration of α-tocopheryl succinate (α-TOS). α-TOS is loaded in the core of nanoparticles (NPs) based on amphiphilic pseudo-block copolymers of N-vinyl pyrrolidone and a methacrylic derivative of α-TOS. These well-defined spherical NPs have sizes below 165 nm and high encapsulation efficiencies.
View Article and Find Full Text PDFActa Biomater
September 2015
Biomaterials Group, Institute of Polymer Science and Technology (ICTP-CSIC), Madrid, Spain; Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.
The article deals with the design, preparation, and evaluation of a new bilayered dressing for application in the healing of compromised wounds. The system is based on the sequential release of two complementary bioactive components to enhance the activation of the regeneration of dermal tissue. The internal layer is a highly hydrophilic and biodegradable film of gelatin and hyaluronic acid (HG), crosslinked with the natural compound genipin, which reacts with the amine groups of gelatin.
View Article and Find Full Text PDFEur J Pharm Biopharm
June 2015
Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
Statistical copolymers of N-(2-hydroxypropyl) methacrylamide (HPMA) and the dendronic methacrylic monomer 2-(3-(Bis(2-(diethylamino)ethyl)amino)propanamido)ethyl methacrylate (TEDETAMA, derived from N,N,N',N'-tetraethyldiethylenetriamine, TEDETA), were synthesized through radical copolymerization and evaluated in vitro as non-viral gene carriers. Three copolymers with nominal molar percentages of HPMA of 25%, 50% and 75% were prepared and studied comparatively to the positive controls poly-TEDETAMA and hyperbranched polyethyleneimine (PEI, 25kDa). Their ability to complex DNA at different N/P molar ratios, from 1/1 up to 8/1, was determined through agarose gel electrophoresis and Dynamic Light Scattering.
View Article and Find Full Text PDFBiomacromolecules
May 2015
†Group of Biomaterials, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, CSIC, C/Juan de la Cierva, 3, 28006 Madrid, Spain.
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)).
View Article and Find Full Text PDFCarbohydr Polym
May 2015
Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, 05100 Terni, Italy; Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, Madrid 28006, Spain.
Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity.
View Article and Find Full Text PDFJ Colloid Interface Sci
May 2015
Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, Madrid 28006, Spain; Materials Engineering Centre, UdR INSTM, University of Perugia, Strada di Pentima, 4, 05100 Terni, Italy.
Biopolymeric nanoparticles (NPs) based on a biodegradable poly(DL-Lactide-co-Glycolide) PLGA copolymer matrix combined with alginate, chitosan and nanostructured cellulose crystals as three different natural emulsion stabilizers, were synthesized by a double emulsion (water/oil/water) method with subsequent solvent evaporation. The morphological, thermal, chemical and rheological properties of the novel designed NPs and the effect of the different emulsion stabilizers used during the synthesis were deeply investigated in order to optimize the synthesis procedure and the development of biodegradable nanoparticles coated with natural polymers. The morphological analysis of the produced nanoparticles showed that all the different formulations presented a spherical shape with smooth surface.
View Article and Find Full Text PDFEur J Pharm Biopharm
February 2015
Applied Macromolecular Chemistry Department, Institute of Polymer Science and Technology, CSIC, Madrid, Spain. Electronic address:
In this work, the cationic monomer N-ethyl pyrrolidine methacrylamide (EPA) was copolymerized with the neutral monomer N-hydroxypropyl methacrylamide (HPMA) at different molar ratios obtaining linear random copolymers that were characterized and evaluated in vitro as non-viral gene carriers using murine Swiss 3T3 fibroblasts. The copolymers with excess or equimolar amount of EPA were able to complex DNA forming stable polyplexes with an average size between 50 and 200 nm, while the copolymers with an excess of HPMA do not. Cell viability was shown to depend on the EPA/HPMA molar ratio, exhibiting the equimolar copolymer poly (EPA-co-HPMA) 50:50 (EPA50) a full cytocompatibility, similar to the HPMA-rich systems.
View Article and Find Full Text PDFCarbohydr Polym
November 2014
Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni, Italy; Institute of Polymer Science and Technology, CSIC, Juan de la Cierva 3, 28006 Madrid, Spain.
In this study, thin films of cellulose nanocrystals (CNC) and silver nanoparticles (Ag) were assembled on different substrates by spin coating. The effect of substrates, deposition parameters, and nanocrystal modification on the topographical and hydrophilic properties of the obtained layers was investigated. Dilute concentrations of pristine cellulose nanocrystals (CNC) and surfactant modified crystals (s-CNC) were used in order to evaluate the effect of modification and concentration on the uniformity of the spin coated cellulose/silver layers.
View Article and Find Full Text PDFCarbohydr Polym
October 2014
Institute of Polymer Science and Technology, The Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; Institute of Biomaterials & Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada; Department of Chemical Engineering and
The preparation of composite biopolymer hydrogels offers the capability to produce biocompatible and biodegradable materials with cooperative properties. In this paper, two natural polymers, namely, chitosan and agarose were employed to prepare composite hydrogels with dual pH and temperature properties. The elastic modulus of the composite hydrogels increased with agarose concentration reaching the value of 1 kPa for the chitosan/agarose gel with a 2% (w/v) concentration of agarose.
View Article and Find Full Text PDF