31 results match your criteria: "Institute of Macromolecular Chemistry CAS[Affiliation]"

Cationic antimicrobial peptides (CAMPs) have recently been associated with the progression of various human diseases, including psoriasis. Although several therapies are currently used to treat psoriasis, they present various disadvantages, such as hepatotoxicity, nephrotoxicity, and skin atrophy. A highly promising approach to overcome these limitations is the use of polyanions for selective CAMP scavenging.

View Article and Find Full Text PDF

Unveiling the Fundamental Principles of Reconfigurable Resistance States in Silver/Poly(Ethylene Glycol) Nanofluids.

Adv Sci (Weinh)

June 2025

Faculty of Mathematics and Physics, Department of Macromolecular Physics, Charles University, V Holešovičkách 2, Prague, 18000, Czech Republic.

Developing novel memristive systems aims to implement key principles of biological neuron assemblies - plasticity, adaptivity, and self-organization - into artificial devices for parallel, energy-efficient computing. Solid-state memristive devices, such as crossbar arrays and percolated nanoparticle (NP) networks, already demonstrate these properties. However, closer similarity to neural networks is expected from liquid-state systems, including polymer melts, which remain largely unexplored.

View Article and Find Full Text PDF

Polybetaine nanobrushes are widely used as inert platforms for label-free biosensing due to their resistance to nonspecific interactions. Despite being considered cationic or electrically neutral, polybetaines can exhibit a negative zeta potential (ZP) at pHs above their isoelectric point (pI). To clarify whether negative zeta potential effectively contributes to surface interactions, we examined three types of nanobrushes deposited on a planar gold substrate: two polybetaines: poly(carboxybetaine methacrylamide) (pCBMAA) and poly(sulfobetaine methacrylamide) (pSBMAA) and hydrophilic poly[-(2-hydroxypropyl) methacrylamide] (pHPMAA), which carries no ionic group.

View Article and Find Full Text PDF

Potentiometric ion sensors represent a significant subgroup of electrochemical sensors. In this study, we have developed a potentiometric sensor using an electrically conductive copolymer of 2,2'-bithiophene (BT) and 1,2-bis(-aminophenoxy)ethane-,,','-tetraacetic acid (BAPTA) for the selective detection of Ca ions in extracellular interstitial fluids. The integration of BAPTA with its highly selective calcium chelating properties into a polymer matrix electrochemical polymerization results in a sensitive conductive polymer layer that effectively detects the presence of calcium ions.

View Article and Find Full Text PDF

This study presents the experimental and theoretical modeling results of pressure changes caused by fluid flow in a water aspirator (water pump) whose working principle is based on the Venturi effect. Experimentally measured pressure drop in a glass-made device is modeled in COMSOL Multiphysics by previously reproducing the device geometry. Computations were performed using a Fluid Flow Module with turbulence model RANS .

View Article and Find Full Text PDF

Structure and Functional Characteristics of Novel Polyurethane/Ferrite Nanocomposites with Antioxidant Properties and Improved Biocompatibility for Vascular Graft Development.

Polymers (Basel)

January 2025

Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia.

Novel ferrite/polyurethane nanocomposites were synthesized using the in situ polymerization method after the addition of different spinel nanoferrite particles (copper, zinc, and copper-zinc) and examined as potential coatings for medical devices and implants in vascular tissue engineering. The influence of the nanoferrite type on the structure and functional characteristics of the polyurethane composites was investigated by FTIR, SWAXS, AFM, TGA, DSC, nanoindentation, swelling behavior, water contact angle, and water absorption measurements. Biocompatibility was evaluated by examining the cytotoxicity and adhesion of human endothelial cells and fibroblasts onto prepared composites and performing a protein adsorption test.

View Article and Find Full Text PDF

This article presents a method for producing hydrogel dressings using high methylated pectin from apples or citrus, doped with the antiseptic agent, octenidine dihydrochloride. Octenidine was incorporated in-situ during the polymer crosslinking. The pectins were characterized by their varying molecular weight characteristics, monosaccharide composition, and degree of esterification (DE).

View Article and Find Full Text PDF

Background: The diagnosis of joint replacement infection is a difficult clinical challenge that often occurs when the implant cannot be salvaged. We hypothesize that the pH value of synovial fluid could be an important indicator of the inflammatory status of the joint. However, in the literature, there is a lack of data on the pH changes in hip and knee joint replacements and their relation to infection and implant failure.

View Article and Find Full Text PDF

Herein, an advanced bioconjugation technique to synthesize hybrid polymer-antibody nanoprobes tailored for fluorescent cell barcoding in flow cytometry-based immunophenotyping of leukocytes is applied. A novel approach of attachment combining two fluorescent dyes on the copolymer precursor and its conjugation to antibody is employed to synthesize barcoded nanoprobes of antibody polymer dyes allowing up to six nanoprobes to be resolved in two-dimensional cytometry analysis. The major advantage of these nanoprobes is the construct design in which the selected antibody is labeled with an advanced copolymer bearing two types of fluorophores in different molar ratios.

View Article and Find Full Text PDF
Article Synopsis
  • Recent issues with polypropylene meshes in hernia repair have prompted the exploration of resorbable polymer alternatives like PCL, PLA, and PLGA, which support cell growth.
  • The study primarily examined the relationship between the structure, mechanical properties, and biocompatibility of different blends made from these polymers through solution casting.
  • Results indicated that PCL/PLGA films had superior cell adhesion and growth compared to other blends, making them promising for biomedical applications.
View Article and Find Full Text PDF

This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA--PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and H NMR spectroscopy, were used to characterize the block copolymers, while H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions.

View Article and Find Full Text PDF

This work concerns the waste management method of algae biomass wastes (ABW). For this purpose, we prepared bio-based thermoplastic polyurethane elastomer (bio-TPU) composites. Algae biomass wastes are derived from algal oil extraction of and from biomass of and .

View Article and Find Full Text PDF

Mesoporous silica SBA-15 was prepared via sol-gel synthesis and functionalized with different types of organosilanes containing various organic functional groups: (3-aminopropyl)triethoxysilane (SBA-15-NH), (3-mercaptopropyl)triethoxysilane (SBA-15-SH), triethoxymethylsilane (SBA-15-CH), triethoxyphenylsilane (SBA-15-Ph), and (3-isocynatopropyl)triethoxysilane (SBA-15-NCO). The prepared materials were investigated as drug delivery systems for naproxen. As model drugs, naproxen acid (HNAP) and its sodium salt (NaNAP) were used.

View Article and Find Full Text PDF

Evaluation of linear versus star-like polymer anti-cancer nanomedicines in mouse models.

J Control Release

January 2023

Institute of Macromolecular Chemistry CAS, Department of Biomedical Polymers, Heyrovského nám. 2, Prague 6 16206, Czech Republic. Electronic address:

Nanomedicines are considered next generation therapeutics with advanced therapeutic properties and reduced side effects. Herein, we introduce tailored linear and star-like water-soluble nanosystems as stimuli-sensitive nanomedicines for the treatment of solid tumors or hematological malignancies. The polymer carrier and drug pharmacokinetics were independently evaluated to elucidate the relationship between the nanosystem structure and its distribution in the body.

View Article and Find Full Text PDF

Poly(lactic-co-glycolic acid) (PLGA) nanoparticle-based drug delivery systems are known to offer a plethora of potential therapeutic benefits. However, challenges related to large-scale manufacturing, such as the difficulty of reproducing complex formulations and high manufacturing costs, hinder their clinical and commercial development. In this context, a reliable manufacturing technique suitable for the scale-up production of nanoformulations without altering efficacy and safety profiles is highly needed.

View Article and Find Full Text PDF

Despite the efficacy and potential therapeutic benefits that poly(lactic-co-glycolic acid) (PLGA) nanomedicine formulations can offer, challenges related to large-scale processing hamper their clinical and commercial development. Major hurdles for the launch of a polymeric nanocarrier product on the market are batch-to-batch variations and lack of product consistency in scale-up manufacturing. Therefore, a scalable and robust manufacturing technique that allows for the transfer of nanomedicine production from the benchtop to an industrial scale is highly desirable.

View Article and Find Full Text PDF

Background: Extracellular vesicles are released into body fluids from the majority of, if not all, cell types. Because their secretion and specific cargo (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • Magnetic maghemite nanoparticles were integrated into superporous poly(2-hydroxyethyl methacrylate) scaffolds using coprecipitation, resulting in materials suitable for bone tissue engineering.
  • Characterization techniques such as SEM and magnetometry showed that the scaffolds featured interconnected pores and displayed superparamagnetic properties, with a saturation magnetization of 2.04 Am/kg from the incorporated nanoparticles.
  • Cell experiments indicated that while initial colonization of the scaffolds was mediocre, the addition of maghemite significantly enhanced cell adhesion, suggesting better compatibility for bone tissue applications.
View Article and Find Full Text PDF

Oxidative addition of cyanogen bromide to ,-chelated and Lappert's stannylenes.

Dalton Trans

April 2021

Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10, Pardubice, Czech Republic.

Stannylenes of L2Sn type bearing either C,N-chelating (1, L = LCN = 2-(N,N-dimethylaminomethyl)phenyl) or bulky amido (2, L = LN = N(SiMe3)2) ligands react with cyanogen bromide (Br-C[triple bond, length as m-dash]N) via an oxidative-addition reaction to give monomeric six-coordinate (LCN)2Sn(Br)CN (1a) and four-coordinate (LN)2Sn(Br)CN (2a) stannanes in moderate yields. In solution, both 1a and 2a undergo instantaneous bromido-cyanido ligand redistribution reactions, leading to mixtures containing 1a, (LCN)2SnBr2 (1b) and (LCN)2Sn(CN)2 (1c) or 2a, (LN)2SnBr2 (2b) and (LN)2Sn(CN)2 (2c), respectively. The prepared species were characterised by multinuclear NMR spectroscopy in solution (1a-c and 2a-c) and in the solid state (1a-c).

View Article and Find Full Text PDF

A series of waterborne polycarbonate-based poly(urethane-urea) nanocomposite films were prepared and characterized. An isocyanate excess of 30 mol% with respect to the hydroxyl groups was used in the procedure, omitting the chain-extension step of the acetone process in the dispersion preparation. The individual steps of the synthesis of the poly(urethane-urea) matrix were followed by nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

H NMR methods in combination with dynamic light scattering were applied to study temperature behavior of poly(2-isopropyl-2-oxazoline) (PIPOx) homopolymer as well as PIPOx--poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx)--PMeOx diblock copolymers in aqueous solutions. H NMR spectra showed a different way of phase transition for the main and side chains in PIPOx-based solutions. Additionally, the phase transition is irreversible for PIPOx homopolymer and partially reversible for PIPOx--PMeOx copolymer.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) using F-based tracers has emerged as a promising multi-purpose noninvasive diagnostic tool and its application requires the use of various F-based tracers for the intended diagnostic purpose. In this study, we report a series of double-stimuli-responsive polymers for use as injectable implants, which were designed to form implants under physiological conditions, and to subsequently dissolve with different dissolution rates (t ranges from 30 to more than 250 days). Our polymers contain a high concentration of fluorine atoms, providing remarkable signal detectability, and both a hydrophilic monomer and a pH-responsive monomer that alter the biodistribution properties of the implant.

View Article and Find Full Text PDF

Poly(amidoamine) (PAMAM)-based electrolytes are prepared by dissolving the PAMAM half-generations G1.5 or G2.5 in propylene carbonate (PC), either with lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) or sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) salts.

View Article and Find Full Text PDF

Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR/Cas9) system has become a revolutionary tool for gene editing. Since viral delivery systems have significant side effects, and naked DNA delivery is not an option, the nontoxic, non-viral delivery of CRISPR/Cas9 components would significantly improve future therapeutic delivery. In this study, we aim at characterizing nanoparticles to deliver plasmid DNA encoding for the CRISPR-Cas system in eukaryotic cells in vitro.

View Article and Find Full Text PDF

Design, controlled synthesis, physico-chemical and biological characteristics of novel well-defined biodegradable star-shaped copolymers intended for advanced drug delivery is described. These new biocompatible star copolymers were synthesised by grafting monodispersed semitelechelic linear (sL) N-(2-hydroxypropyl)methacrylamide copolymers onto a 2,2-bis(hydroxymethyl)propionic acid (bisMPA)-based polyester dendritic core of various structures. The hydrodynamic diameter of the star copolymer biomaterials can be tuned from 13 to 31 nm and could be adjusted to a given purpose by proper selection of the bisMPA dendritic core type and generation and by considering the sL copolymer molecular weight and polymer-to-core molar ratio.

View Article and Find Full Text PDF