51 results match your criteria: "Indian Institute of Engineering Science and Technology IIEST[Affiliation]"

The whole world is still suffering substantially from the coronavirus disease 2019 (COVID-19) outbreak. Several protein-based molecules that are associated with the Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which are essential for its functionality, survival, and pathogenesis have been identified and are considered as potential therapeutic targets. These protein-based molecules are either structural/non-structural components of SARS-CoV-2 or host factors, which play a crucial role in this infection.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19), the pandemic that originated in China has already spread into more than 190 countries, resulting in huge loss of human life and many more are at the stake of losing it; if not intervened with the best therapeutics to contain the disease. For that aspect, various scientific groups are continuously involved in the development of an effective line of treatment to control the novel coronavirus from spreading rapidly. Worldwide scientists are evaluating various biomolecules and synthetic inhibitors against COVID-19; where the nucleic acid-based molecules may be considered as potential drug candidates.

View Article and Find Full Text PDF

There is close interdependence between cell survival, cell senescence, events of the cell cycle, apoptosis, malignancy development, and tumor responses to cancer treatment. Intensive studies and elaborate researches have been conducted on the functional aspects of oncogenes, tumor suppressor genes, apoptotic genes, and members guiding cell cycle regulation. These disquisitions have put forward the existence of a highly organized response pathway termed as a DNA-damage response network.

View Article and Find Full Text PDF

The world is passing through a very difficult phase due to the coronavirus disease 2019 (COVID-19) pandemic, which has disrupted almost all spheres of life. Globally, according to the latest World Health Organization report (10 August 2020), COVID-19 has affected nearly 20 million lives, causing 728 013 deaths. Due to the lack of specific therapeutic drugs and vaccines, the outbreak of disease has spawned a corpus of contagious infection all over the world, day by day, without control.

View Article and Find Full Text PDF

The Bacillus Calmette-Guerin vaccine (BCG vaccine) designed to prevent tuberculosis in children has been shown to induce a adaptive immune response in the body to fight against bacteria as well as other parasites and viruses. This knowledge has been reciprocated to generate the idea that this vaccine can also offer protection against severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). Some recent pre-print articles have highlighted that countries with mass BCG immunizations seems to have a lower incidence of coronavirus disease 2019 (COVID-19) compared to those without BCG immunization.

View Article and Find Full Text PDF

Glycerol-plasticized agarose separator suppressing dendritic growth in Li metal battery.

Carbohydr Polym

November 2020

ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR3459, 33 Rue Saint Leu, 80039, Amiens Cedex, France; Laboratory of Electrochemistry for Energy and Environment (L3E), Centre of Excellence in Green Energy and Senso

The growth of dendrite is the major limitation to the development of the Li-metal battery. To solve it, we disclose the preparation and performances of separator (MAGly) with a complete "green" formulation using biosourced and sustainable compounds: agarose as biopolymer along with glycerol as plasticizing agent. The natural biopolymer films are non-porous in nature and possess high elasticity with high stiffness along a wide temperature range (-35 to 180 °C), able to prevent the perpendicular dendritic Li growth.

View Article and Find Full Text PDF

The COVID-19 disease is caused by a positive stranded RNA virus called SARS-CoV-2. The virus mainly targets the pulmonary epithelial cells as it's initial site of infection by letting its surface spike protein interact and bind to the host ACE2 receptor. The internalization and gradual replication of the virus results in an exaggerated immune response triggering release of many pro-inflammatory cytokines and chemokines.

View Article and Find Full Text PDF

In the last decade, gold nanoparticles have emerged as promising agents for in vitro bio-sensing and in vivo cancer theranostics. However, different investigations have reported widely varying cytotoxicity and uptake efficiency of gold nanoparticles depending upon their size. Therefore, more extensive studies are needed to standardize these biological effects as a function of size on a particular cell line.

View Article and Find Full Text PDF

Multilayered graphene deposited on a flat resistive surface has twofold benefits. Less electronic scattering reduces the sheet resistance of the combined bilayer and high photon scattering through the unavoidable wrinkles on the chemically synthesized graphene layer leads to decreased effective reflection. In this paper, wet-chemically-synthesized reduced graphene oxide (RGO) has been employed on the top of the indium-doped tin-oxide (ITO) layer.

View Article and Find Full Text PDF

Here, we have reported the synthesis of three-dimensional, mesoporous, nano-SnO cores encapsulated in nonstoichiometric SnO shells grown by chemical as well as physical synthesis procedures such as plasma-enhanced chemical vapor deposition, followed by functionalization with reduced graphene oxide (rGO) on the surface. The main motif to fabricate such morphology, i.e.

View Article and Find Full Text PDF

Correction for 'Iodine mediated oxidative cross coupling of 2-aminopyridine and aromatic terminal alkyne: a practical route to imidazo[1,2-a]pyridine' by Surya Kanta Samanta et al., Org. Biomol.

View Article and Find Full Text PDF

A novel, transition-metal free route leading to imidazo[1,2-a]pyridine derivatives via iodine mediated oxidative coupling between 2-aminopyridine and aromatic terminal alkyne has been demonstrated. This newly developed method discloses an operationally simple way for the construction of imidazoheterocycles. Commercially available antiulcer drug zolimidine may readily be synthesized employing this method.

View Article and Find Full Text PDF

Background: Rice bran oil and soy protein nanoparticles (SPNs) may be considered as novel functional food ingredients for soy yogurt production. Formulation of soy yogurt with SPNs and rice bran oil, which has significant physiological functions, will convert them into functional food products. This study was conducted to develop rice bran oil-based soy protein nanoparticles emulsion (SPNE) and to evaluate physical properties, antioxidant activities, oxidative stability and microbiological load as well as textural attributes of SPNs incorporated yogurt (SPNY) during storage at 4 °C for 45 days.

View Article and Find Full Text PDF

Steel structures significantly degrades owing to corrosion especially in coastal and industrial areas where significant amounts of aggressive ions are present. Therefore, anodic metals such as Al and Zn are used to protect steel. In the present study, we provide insights for the corrosion mechanism and kinetics of Al-Zn pseudo alloy coating deposited on mild steel plate via an arc thermal spraying process in 3.

View Article and Find Full Text PDF

In this study, cellulose acetate (CA) solutions (9-15% w/v) prepared in acetone-water (80:20 & 90:10 v/v) system were subjected to electrospinning for fabricating non-woven nanofibrous CA scaffolds (CAS) with average fiber diameters from 300 to 600 nm. Further, regenerated cellulose scaffold (RCS) was obtained by deacetylation of electrospun CAS in alkaline media for varying time periods to find the ideal time required for complete deacetylation. Following deacetylation, RCS was subjected to varying temperatures (60 °C, 80 °C) to observe the possible positive effect of heat treatment on the improvement of mechanical strength.

View Article and Find Full Text PDF

Liquid gated ZnO nanorod FET sensor for ultrasensitive detection of Hepatitis B surface antigen with vertical electrode configuration.

Biosens Bioelectron

December 2018

Department of Electronics and Telecommunication Engineering, Indian Institute of Engineering Science and Technology, Shibpur, West Bengal 711103, India. Electronic address:

Detection of the Hepatitis-B surface antigen at the attomolar level is demonstrated using antibody functionalized liquid gated ZnO nanorods field effect transistor (FET) biosensor with vertical electrode configuration. The sensor is operated in heterodyne mode at high frequency to overcome the problem of Debye screening effect in physiological analyte. Enhanced penetration of the electric field lines through the nanorods enables significant improvement in the limit of detection and sensitivity compared to that of the conventional lateral electrode configuration.

View Article and Find Full Text PDF

Fabrication of mechanically stable, biocompatible bilayered polymeric scaffold consisting of chitosan(CS)/polycaprolactone(PCL) and hyaluronic acid(HA) using less toxic solvent system is presented in this study. Electrospinning technique to make the scaffold was used followed by morphological, physiochemical and mechanical characterizations. Average fiber diameter of CS/PCL-HA bilayered scaffold was found 362.

View Article and Find Full Text PDF

Mesenchymal stromal/stem cells (MSCs) are multipotent cells that offer a promising outcome in the field of regenerative medicine. MSCs are present in various tissues including bone marrow, fat, skin, and placenta. The interest in clinical application of these mesoderm-derived MSCs is primarily fueled by their high self-renewal capacity and multipotency.

View Article and Find Full Text PDF

Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements.

View Article and Find Full Text PDF

The present study examined the nutritional properties of trans-free edible oleogels made from oil blends of rice bran and flaxseed in animal model. Oleogels were prepared by using mixture of palm stearin (PS) with cetyl laurate (CL) and palm stearin (PS) with cetyl caprylate (CC) as oleogelators. The oleogel samples were prepared with 15 weight % oleogelators (2:1 molar ratio of PS:CC or PS:CL) at 60°C with 1 hr constant stirring in blended oil.

View Article and Find Full Text PDF

Integrated Photobioelectrochemical Systems: A Paradigm Shift in Artificial Photosynthesis.

Trends Biotechnol

April 2017

Centre of Excellence for Green Energy and Sensor Systems (CEGESS), Indian Institute of Engineering Science and Technology (IIEST), Shibpur, Howrah - 711103, West Bengal, India. Electronic address:

Recent breakthroughs have reinvigorated the century-old research domain of artificial photosynthesis. Here, we highlight CO-reducing and O-liberating integrated photobioelectrochemical systems that contain novel enzymatic cathodes and photoanodes. These devices, which are completely self-driven by solar energy with unprecedented efficiency and stability, have important implications for biotechnological research communities.

View Article and Find Full Text PDF

An effective and novel pore sealing agent to enhance the corrosion resistance performance of Al coating in artificial ocean water.

Sci Rep

February 2017

Department of Civil and Construction Engineering, Faculty of Engineering and Science, Curtin University Sarawak, CDT 250, 98009 Miri, Sarawak, Malaysia.

A new technique was accepted to fill the porosity of Al coating applied by arc thermal spray process to enhance corrosion resistance performance in artificial ocean water. The porosity is the inherent property of arc thermal spray coating process. In this study, applied coating was treated with different concentrations of ammonium phosphate mono basic (NHHPO: AP) solution thereafter dried at room temperature and kept in humidity chamber for 7d to deposit uniform film.

View Article and Find Full Text PDF

Analysis and optimization of silicon nano-structured geometry (black silicon) for photovoltaic applications has been reported. It is seen that a unique class of geometry: micro-nanostructure has the potential to find a balance between the conflicting interests of reduced reflection for wide angles of incidence, reduced surface area enhancement due to the nano-structuring of the substrate and reduced material wastage due to the etching of the silicon substrate to realize the geometry itself. It is established that even optimally designed micro-nanostructures would not be useful for conventional wafer based approaches.

View Article and Find Full Text PDF

In this study, we demonstrate development of p-Cu2O thin films through cathodic electrodeposition technique at constant current of 0.1 mA/cm(2) on Cu, Al, and indium tin oxide (ITO) substrates from basic CuSO4 solution containing Triton X-100 as the surfactant at 30-35 °C. The optical and morphological characterizations of the semiconductors have been carried out using UV-vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy.

View Article and Find Full Text PDF