Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, we have reported the synthesis of three-dimensional, mesoporous, nano-SnO cores encapsulated in nonstoichiometric SnO shells grown by chemical as well as physical synthesis procedures such as plasma-enhanced chemical vapor deposition, followed by functionalization with reduced graphene oxide (rGO) on the surface. The main motif to fabricate such morphology, i.e., core-shell assembly of burflower-like SnO nanobid is to distinguish gases quantitatively at reduced operating temperatures. Electrochemical results reveal that rGO anchored on SnO surface offers excellent gas detection performances at room temperature. It exhibits outstanding H selectivity through a wide range, from ∼10 ppm to 1 vol %, with very little cross-sensitivity against other similar types of reducing gases. Good recovery as well as prompt responses also added flair in its quality due to the highly mesoporous architecture. Without using any expensive dopant/catalyst/filler or any special class of surfactants, these unique SnO mesoporous nanostructures have exhibited exceptional gas sensing performances at room temperature and are thus helpful to fabricate sensing devices in most cost-effective and eco-friendly manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6648368PMC
http://dx.doi.org/10.1021/acsomega.9b01372DOI Listing

Publication Analysis

Top Keywords

gas detection
8
core-shell assembly
8
performances room
8
room temperature
8
sno
5
outstanding room-temperature
4
room-temperature hydrogen
4
hydrogen gas
4
detection plasma-assisted
4
plasma-assisted graphene-functionalized
4

Similar Publications

A flexible linear circular bipolarization conversion metasurface based on graphene.

Phys Chem Chem Phys

September 2025

School of Electrical and Automation Engineering, Suzhou University of Technology, Suzhou, 215506, China.

A flexible bipolarization conversion metasurface based on graphene is proposed in this paper, which can achieve single-band linear-to-linear (LTL) and dual-band linear-to-circular (LTC) polarization conversion. The polarization conversion ratio (PCR) and axial ratio (AR) are dynamically regulated by varying the sheet resistance () of graphene. When = 1400 Ω Sq, the designed metasurface achieves a single-band LTL polarization conversion of 7.

View Article and Find Full Text PDF

Background: Ensuring adequate depth of i.v. anaesthesia by measuring propofol in breath gas could increase patient safety.

View Article and Find Full Text PDF

This study presents the first comprehensive sensory-guided investigation into the odor-active compounds of dried hemp ( L.) flowers. Using gas chromatography-olfactometry (GC-O) in combination with aroma extract dilution analysis (AEDA), 52 odor-active compounds were identified across six cannabidiol-rich cultivars.

View Article and Find Full Text PDF

In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.

View Article and Find Full Text PDF

The soil in reclaimed shale gas sites is compacted and suffers from issues like poor drainage, drought conditions, and nutrient deficiency, posing challenges for agricultural production. In this study, rare earth tailings were incorporated into biochar at different mass ratios (rare earth tailings: biochar = 1:1, 1:2, 1:3, 1:4). Subsequently, a series of rare earth tailings-doped biochar materials (REE-BC) were prepared by calcination at 700°C.

View Article and Find Full Text PDF