5 results match your criteria: "Emory University and Georgia Institute of Technology Atlanta[Affiliation]"
Radiother Oncol
March 2025
Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; Department of Biomedical Engineering, Emory University and Georgia Institute of Technology Atlanta, GA 30308, USA. Electronic address:
Purpose: This study aims to develop a robust, large-scale deep learning model for medical image segmentation, leveraging self-supervised learning to overcome the limitations of supervised learning and data variability in clinical settings.
Methods And Materials: We curated a substantial multi-center CT dataset for self-supervised pre-training using masked image modeling with sparse submanifold convolution. We designed a series of Sparse Submanifold U-Nets (SS-UNets) of varying sizes and performed self-supervised pre-training.
The advent of large-scale neural recordings has enabled new approaches that aim to discover the computational mechanisms of neural circuits by understanding the rules that govern how their state evolves over time. While these cannot be directly measured, they can typically be approximated by low-dimensional models in a latent space. How these models represent the mapping from latent space to neural space can affect the interpretability of the latent representation.
View Article and Find Full Text PDFThis 9th Symposium on Hemostasis is an international scientific meeting held biannually in Chapel Hill, North Carolina. The meeting is in large measure the result of the close friendship between the late Dr. Harold R.
View Article and Find Full Text PDFAdv Mater
December 2009
Laser Dynamics Laboratory, School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta, GA 30332 (USA).
Noble metal nanoparticles are capable of confining resonant photons in such a manner as to induce coherent surface plasmon oscillation of their conduction band electrons, a phenomenon leading to two important properties. Firstly, the confinement of the photon to the nanoparticle's dimensions leads to a large increase in its electromagnetic field and consequently great enhancement of all the nanoparticle's radiative properties, such as absorption and scattering. Moreover, by confining the photon's wavelength to the nanoparticle's small dimensions, there exists enhanced imaging resolving powers, which extend well below the diffraction limit, a property of considerable importance in potential device applications.
View Article and Find Full Text PDF