98%
921
2 minutes
20
Methanobacterium thermoautotrophicum contains a tungsten formylmethanofuran dehydrogenase (FwdABCD) and a molybdenum formylmethanofuran dehydrogenase (FmdABC). The fwdHFGDACB operon encoding the tungsten enzyme has recently been characterized. We report here on the structure and expression of the gene cluster encoding the molybdenum enzyme. This gene cluster is composed of three open reading frames (fmdECB). The fmdB gene was found to encode the molybdopterin-dinucleotide-binding subunit harboring the enzyme's active site; FmdB is thus functionally equivalent to FwdB. fmdC encodes a protein with sequence similarity to FwdC in its N-terminal part and with sequence similarity to FwdD in its C-terminal part; FmdC is thus functionally equivalent to FwdC and FwdD. Interestingly, the fmd operon lacks a gene fmdA encoding the subunit FmdA of the molybdenum enzyme. FmdA has the same apparent molecular mass and the same N-terminal amino acid sequence as FwdA and only one DNA sequence encoding for this N-terminal amino acid sequence was found in the M. thermoautotrophicum genome. It is therefore proposed that FmdA and FwdA are encoded by the same gene namely fwdA in the fwd operon. In agreement with this proposal is the finding that fwdA is expressed constitutively: northern-blot analysis of RNA from tungstate- and molybdate-grown cells of M. thermo-autotrophicum revealed that the fwdHFGDACB gene cluster is transcribed in the presence of either molybdate or tungstate in the growth medium whereas the fmdECB gene cluster was only transcribed when molybdate was present.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1996.0156r.x | DOI Listing |
Acc Chem Res
December 2024
Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany.
Nat Commun
October 2024
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359, Bremen, Germany.
The anaerobic oxidation of alkanes is a microbial process that mitigates the flux of hydrocarbon seeps into the oceans. In marine archaea, the process depends on sulphate-reducing bacterial partners to exhaust electrons, and it is generally assumed that the archaeal CO-forming enzymes (CO dehydrogenase and formylmethanofuran dehydrogenase) are coupled to ferredoxin reduction. Here, we study the molecular basis of the CO-generating steps of anaerobic ethane oxidation by characterising native enzymes of the thermophile Candidatus Ethanoperedens thermophilum obtained from microbial enrichment.
View Article and Find Full Text PDFCommun Biol
October 2024
Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable.
View Article and Find Full Text PDFJ Environ Manage
August 2024
Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Co-digestion of kitchen waste (KW) and black water (BW) can be considered as an attractive method to efficiently achieve the clean energy from waste. To find the optimal operation parameters for the co-digestion, the effects of different temperatures (35 and 55 °C) and BW:KW ratios on the reactor performances, microbial communities and metabolic pathways were studied. The results showed that the optimum BW:KW ratio was 1:3.
View Article and Find Full Text PDFAnaerobe
August 2024
Tecnológico Nacional de México, Campus Mazatlán, Calle Corsario 1 No. 203 Col. Urías, A.P. 757, Mazatlán, Sinaloa, 82070, Mexico. Electronic address:
Objectives: This lab-scale study aimed to investigate the effect of total ammonia nitrogen (TAN) stress on the methanogenic activity and the taxonomic and functional profiles of the microbial community of anaerobic sludge (AS) from a full-scale bioreactor.
Methods: The AS was subjected to a stepwise increase in TAN every 14 days at concentrations of 1, 2, 2.5, 3, 3.