Association between PM Chemical Constituents and Preterm Birth: The Undeniable Role of Preconception Gene Variation.

Biomed Environ Sci

Department of Environmental Health & Environment and Health Innovation Team, School of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China;National Health Commission Key Laboratory of Birth Defects Prevention, Zhengzhou 450002, Henan, China;Yellow River Institute for Ecological Prote

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2025.076DOI Listing

Publication Analysis

Top Keywords

association chemical
4
chemical constituents
4
constituents preterm
4
preterm birth
4
birth undeniable
4
undeniable role
4
role preconception
4
preconception gene
4
gene variation
4
association
1

Similar Publications

Iodine deficiency and iodine supplementation in pregnancy and lactation. A literature review.

Pol Merkur Lekarski

September 2025

AMERIDENT NON-PUBLIC HEALTH CARE INSTITUTION CIVIL LAW PARTNERSHIP MARIA AND LAZARZ LEGIEN, BIELSKO-BIALA, POLAND.

Objective: Aim: Iodine is an essential nutrient for the synthesis of thyroid hormones. It has a huge impact on the normal brain development of the foetus and the health of the pregnant woman. During pregnancy and lactation, the need for iodine increases significantly.

View Article and Find Full Text PDF

Magnetic heat capacity measurements of a high-quality single crystal of the dipole-octupole pyrochlore Ce_{2}Hf_{2}O_{7} down to a temperature of T=0.02  K are reported. These show a two-peaked structure, with a Schottky-like peak at T_{1}∼0.

View Article and Find Full Text PDF

An Activatable and Covalent Tumor-Associated Antigen Capturer Enabling Systemic Injection for Promoted Antitumor Immunity.

J Am Chem Soc

September 2025

Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and Academy for Advanced Interdisciplinary Studies, Nankai University, Tianjin 300071, PR China.

Antigen-capturing nanomaterials hold great promise for cancer immunotherapy; however, the need for tumor localized administration and limited antigen-binding affinity remains the "Achilles heel" of this strategy. Herein, we present a tumor microenvironment (TME)-activatable nanoplatform, TDR848@FPB, designed for systemic administration and enhanced covalent capture of tumor-associated antigens (TAAs), enabling effective immunotherapy with minimal off-target effects and independent of localized tumor administration. This platform encapsulates a photosensitizer-conjugated, light-activated toll-like receptor (TLR) agonist, which induces immunogenic cell death and triggers a pro-inflammatory TME conducive to antigen capture upon light irradiation.

View Article and Find Full Text PDF

CpG-A induces liquid-liquid phase separation of HMGB1 to activate the RAGE-mediated inflammatory pathway.

Proc Natl Acad Sci U S A

September 2025

State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.

High-mobility group box protein 1 (HMGB1) is a chromatin-associated nonhistone protein widely distributed in the nucleus of eukaryotic cells. It is transported extracellularly as a proinflammatory mediator or late warning protein to induce immune and inflammatory reactions upon stimuli such as microbial infection. Here, we have found that HMGB1 directly interacts with bacterial DNA analogue CpG-A in the extracellular environment to undergo liquid-liquid phase separation (LLPS) via its positively charged DNA-binding domain.

View Article and Find Full Text PDF

Vascularization of implanted biomaterials is critical to reconstructive surgery and tissue engineering. Ultimately, the goal is to promote a rapidly perfusable hierarchical microvasculature that persists with time and can meet underlying tissue needs. We have previously shown that using a microsurgical technique, termed micropuncture (MP), in combination with porous granular hydrogel scaffolds (GHS) fabricated via interlinking hydrogel microparticles (microgels) results in a rapidly perfusable patterned microvasculature.

View Article and Find Full Text PDF