98%
921
2 minutes
20
Several computational models are available for representing the gene expression process, with each having their advantages and disadvantages. Phenomenological models are widely used as they make appropriate simplifications that aim to find a middle ground between accuracy and complexity. The existing phenomenological models compete in terms of how the transcription initiation process is approximated, to achieve high accuracy while having the lowest complexity possible. However, most current models still suffer from high parameter complexity in the case of complex promoters. Herein, we formally derive a phenomenological approach to model RNA polymerase recruitment, stating approximations on cooperativity between transcription factors that are applicable to promoters requiring multifactorial input, which reduces parameter complexity. We then apply this method to biologically relevant networks of varying complexities to show that the approximations improved predictive ability compared to existing models. In summary, our reduced parameter model (RPM) had lower complexity while maintaining high accuracy, which leads to better scalability for complex networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2025.112264 | DOI Listing |
J Theor Biol
September 2025
Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India. Electronic address:
Several computational models are available for representing the gene expression process, with each having their advantages and disadvantages. Phenomenological models are widely used as they make appropriate simplifications that aim to find a middle ground between accuracy and complexity. The existing phenomenological models compete in terms of how the transcription initiation process is approximated, to achieve high accuracy while having the lowest complexity possible.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
September 2025
Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon, Republic of Korea;
Thunberg is a perennial herbaceous plant of the genus that belongs to the Apiaceae family and is effective in improving inflammation, gout, and dizziness. However, the skin pruritus improvement effect and mechanism of action of Thunberg root extract (PJRE) have not yet been reported. We investigated the effects of PJRE on the regulation of pruritus and inflammatory responses in compound 48/80 (C48/80)-treated mice, phorbol 12-myristate 13-acetate (PMA)/A23187-induced human skin mast cells, and LPS-stimulated mouse macrophages.
View Article and Find Full Text PDFSurg Case Rep
September 2025
Department of Pathology, Self-Defense Forces Central Hospital, Tokyo, Japan.
Introduction: Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm that most commonly originates in the pleura but can also occur at extrapleural sites, including the abdominal cavity. Among these, primary SFT of the stomach is exceptionally rare. Due to overlapping clinical, endoscopic, and radiologic characteristics, distinguishing SFT from gastrointestinal stromal tumor (GIST) can be particularly challenging.
View Article and Find Full Text PDFPLoS Pathog
September 2025
Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
Respiratory syncytial virus (RSV), the most common cause of bronchiolitis and pneumonia in infants, elicits a remarkably weak innate immune response. This is partly due to type I interferon (IFN) antagonism by the non-structural RSV NS1 protein. It was recently suggested that NS1 could modulate host transcription via an interaction with the MED25 subunit of the Mediator complex.
View Article and Find Full Text PDFCancer Cell
July 2025
Department of Lymphoma and Myeloma, University of Texas (UT) MD Anderson Cancer Center, Houston, TX, USA; Lymphoid Malignancies Program, UT MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, UT MD Anderson Cancer Center, Houston, TX, USA. Electronic address: mgreen5@mdander
Large B cell lymphomas (LBCL) are clinically and biologically heterogeneous lymphoid malignancies with complex microenvironments that are central to disease etiology. Here, we have employed single-nucleus multiome profiling of 232 tumor and control biopsies to characterize diverse cell types and subsets that are present in LBCL tumors, effectively capturing the lymphoid, myeloid, and non-hematopoietic cell compartments. Cell subsets co-occurred in stereotypical lymphoma microenvironment archetype profiles (LymphoMAPs) defined by; (1) a sparsity of T cells and high frequencies of cancer-associated fibroblasts and tumor-associated macrophages (FMAC); (2) lymph node architectural cell types with naive and memory T cells (LN); or (3) activated macrophages and exhausted CD8 T cells (TEX).
View Article and Find Full Text PDF