Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Natural polyreactive antibodies achieve enhanced avidity through heterogeneous ligand binding. However, engineering synthetic heteroligation systems with precise control over recognition motif orientation and distance remains challenging. Here, a DNA framework-based strategy is presented to program heterotypic binding by spatially organizing bivalent aptamers targeting platelet-derived growth factor-BB (PDGF-BB). By systematically tuning the distance between heterotypic recognition motifs, programmable modulation of binding affinity is demonstrated. The resulting heteroligation exhibits rapid binding kinetics, high specificity, and ultrasensitive detection of PDGF-BB, with a limit of detection reaching 0.5 pM. This approach provides a versatile platform for designing multivalent interactions, with potential applications in disease diagnostics and immunotherapy for cancer, viral infections, and allergic disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202500822 | DOI Listing |