Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Carotenoids and their cleavage products (referred to as apocarotenoids) have functional properties such as antioxidant activity, fragrance, and color that are important in the pharmaceutical, healthcare, cosmetics, and food industries. Currently, carotenoids and apocarotenoids are primarily obtained through extraction from natural sources or chemical synthesis, both of which are associated with inefficiencies, environmental impact, and product limitations. Ongoing advances in metabolic engineering and synthetic biology have positioned heterologous biosynthesis as a promising, efficient, and sustainable production strategy. This review summarizes recent progress in carotenoid and apocarotenoid biosynthesis, detailing the key biosynthetic pathways originating from mevalonate and methylerythritol phosphate, with a focus on the enzymes involved in carotenoid cleavage. We also highlight significant advancements in microbial production, emphasizing various metabolic engineering strategies aimed at enhancing microbial production efficiency. Lastly, we discuss potential future research directions for the biosynthesis of these compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2025.108708 | DOI Listing |