Harnessing functional annotation to improve the accuracy and transferability of polygenic scores.

Nat Rev Genet

Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41576-025-00893-4DOI Listing

Publication Analysis

Top Keywords

harnessing functional
4
functional annotation
4
annotation improve
4
improve accuracy
4
accuracy transferability
4
transferability polygenic
4
polygenic scores
4
harnessing
1
annotation
1
improve
1

Similar Publications

[Harnessing retroviral engineering for genome reprogramming].

Med Sci (Paris)

September 2025

CIRI, Centre international de recherche en infectiologie Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France.

The accumulated knowledge on the biology of the HIV-1 virus has led to the emergence of technologies that exploit the architecture of retroviruses and their integration or vectorization properties. This field of study constitutes retroviral vectorology, democratized in laboratories by the use of lentiviral vectors. By hijacking retroviral assembly, other systems are emerging and are increasingly mentioned in recent literature.

View Article and Find Full Text PDF

Genome-scale metabolic models (GEMs) are widely used in systems biology to investigate metabolism and predict perturbation responses. Automatic GEM reconstruction tools generate GEMs with different properties and predictive capacities for the same organism. Since different models can excel at different tasks, combining them can increase metabolic network certainty and enhance model performance.

View Article and Find Full Text PDF

The design, synthesis, and characterization of a series of supramolecular receptors based on electron-deficient aromatic systems capable of engaging in anion-π interactions are reported. Receptors 1 and 3 combine an electron-poor aromatic scaffold with a cation-binding crown ether unit. Binding studies monitored by H NMR titrations in acetonitrile revealed that these receptors exhibit enhanced affinity for bromide anions in the presence of sodium cations, indicating cooperative ion-pair recognition.

View Article and Find Full Text PDF

Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.

View Article and Find Full Text PDF

Diabetes has emerged as a critical global health issue, with its associated complications posing a severe threat to patients' quality of life. Current research demonstrates that imbalance in mitochondrial dynamics and autophagic dysregulation play pivotal roles in the pathogenesis of diabetic complications, particularly in diabetic cardiomyopathy, nephropathy, peripheral neuropathy and retinopathy. Strategic modulation of mitochondrial function and autophagic activity represents a promising therapeutic approach for managing diabetic complications.

View Article and Find Full Text PDF