98%
921
2 minutes
20
Despite the increased number of studies on PFAS globally, our understanding of mass transport pathways remains limited. To address this, we investigated major rivers and creeks feeding into Port Phillip Bay, Melbourne, Australia, for 52 PFAS. We collected 76 grab samples and deployed 28 Polar Organic Chemical Integrative Samplers (POCIS) from 7 locations over 2-months to identify differences PFAS profiles across catchments, the influence of land uses and rainfall. There were 25 PFAS detected in grab samples and 26 in POCIS. Mean ƩPFAS for grab samples was 76.4 ng/L, with ∼90% made up of ten PFAS. PFOS was the most common but pre-cursors were also present. Our surface water flow model showed a wide range of land uses influenced PFAS profiles across catchments, including those not traditionally associated as point sources, highlighting further investigation is needed. We estimated 57.4 kg/year ƩPFAS were exported to Port Phillip Bay, with surface water flows exporting over twice the ƩPFAS compared to wastewater discharges. Our findings show the importance of monitoring a wide range of PFAS in combination with land use and surface water flow models is crucial for mitigating diffuse pollution sources to effectively safeguard both marine ecosystems and community health, worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2025.122751 | DOI Listing |
Mikrochim Acta
September 2025
Key Laboratory of Water Security and Water Environment Protection in Plateau Intersection (NWNU), Ministry of Education, Northwest Normal University, Lanzhou, 730070, China.
An electrochemical sensor based on MXene/PANI/SnO nanomaterials was developed for the detection of 4-aminophenol (4-AP). In situ oxidative growth of PANI on the MXene surface effectively hindered the stacking of the lamellae and increased the specific surface area of the composites. Further complexation of tin dioxide with swelling properties of the structure provided adsorption and catalytic sites for 4-AP.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States.
Slippery liquid-infused porous surfaces (or "SLIPS") can prevent bacterial surface fouling, but they do not inherently possess the means to kill bacteria or reduce cell loads in surrounding media. Past reports show that the infused liquids in these materials can be leveraged to load and release antimicrobial agents, but these approaches are generally limited to the use of hydrophobic agents that are soluble in the infused oily phases. Here, we report the design of so-called "proto-SLIPS" that address this limitation and permit the release of highly water-soluble (or oil-insoluble) agents.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Department of Fashion and Textile Design, College of Arts and Design, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
In this paper, lignin was chemically extracted from fibers and modified with branched polyethyleneimine (BPEI) and the resulting samples were applied for the adsorption of two anionic dyes; Acid red 183 (AR183) and Acid blue 25 (AB25) from aqueous suspension. Analytical characterization methods including SEM, FT-IR, TGA/DTG, and XRD were used to analyze the studied samples. The images of the extracted lignin displayed a rough feature.
View Article and Find Full Text PDFInt J Phytoremediation
September 2025
Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.
This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.
View Article and Find Full Text PDF