The use of stem cells and organoids for modeling host-microbe interactions in low-biomass tissues.

Front Cell Infect Microbiol

School of Veterinary Medicine, Population Health and Reproduction, University of California, Davis, Davis, CA, United States.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Stem cells and organoids have emerged as pivotal biological tools for biologically relevant models. Together, these models realistically recapitulate structural and functional elements of the organ, allowing for studies of cellular, molecular, and genetic features that underpin various diseases that are difficult to observe in low-biomass tissues. Stem cells, and more recently organoids, have been applied as regenerative therapies. The emergence of the microbiome as an occupant throughout different body locales requires new approaches to understand the complex cellular interactions with the host tissue at each site. The success of regenerative medicine strategies and therapeutic development is intricately linked to this understanding and management of host-microbe dynamics. Interactions with the host microbiome and infections can both significantly impair tissue regeneration and compromise the function of stem cell-derived therapies. Therefore, a comprehensive understanding of how pathogens and the microbiome interact with stem cells and organoids is relevant for developing safe and effective regenerative medicine interventions. This review explores the evolving landscape of organoid technology, including a discussion on the importance of stem cell studies and considerations for organoid development that are important for use as models to study microbiome interactions. Additionally, this work describes the pivotal role of cell culture models in advancing host-microbe interaction studies in understudied low-biomass organs such as the stomach and reproductive tract. Through this assessment, we aim to shed light on the potential of these models to transform the approach to studying and managing infectious diseases within the context of regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405370PMC
http://dx.doi.org/10.3389/fcimb.2025.1641366DOI Listing

Publication Analysis

Top Keywords

stem cells
16
cells organoids
16
regenerative medicine
12
low-biomass tissues
8
tissues stem
8
interactions host
8
stem
6
models
5
organoids
4
organoids modeling
4

Similar Publications

IGLV3-21-directed bispecific antibodies activate T cells and promote killing in a high-risk subset of chronic lymphocytic leukemia.

Haematologica

September 2025

Division of Medical Oncology, University Hospital Basel, Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel.

We previously used a disease-specific B cell receptor (BCR) point mutation (IGLV3-21R110) for selective targeting of a high-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. Since CLL is a disease of the elderly and a significant fraction of patients is not able to physically tolerate CAR T cell treatment, we explored bispecific antibodies as an alternative for precision targeting of this tumor mutation. Heterodimeric IgG1-based antibodies consisting of a fragment crystallizable region (Fc) attached to both an anti-IGLV3-21R110 Fab and an anti-CD3 (UCHT1) single chain variable fragment (R110-bsAb) selectively killed cell lines engineered to express high levels of the neoepitope as well as primary CLL cells using healthy donor and CLL patient-derived T cells as effectors.

View Article and Find Full Text PDF

Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.

Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.

View Article and Find Full Text PDF

Acute Myeloid Leukemia (AML) is a heterogeneous hematological malignancy with an altered bone marrow microenvironment sheltering leukemic stem cells (LSCs). LSCs are characterized as self-renewing and highly proliferative cancer stem cells and accumulate abnormal genetic and epigenetic factors contributing to their uncontrolled proliferation. Chromosomal translocation t(9;11)(p22;q23) forms fusion oncoprotein, MLL-AF9, and regulates the transcription factor, C-Myb, which is highly expressed in AML.

View Article and Find Full Text PDF

A transition of dynamic rheological responses of single cells: from fluid-like to solid-like.

Biophys J

September 2025

Laboratory for Multiscale Mechanics and Medical Science, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, China. Electronic address:

The mechanical properties of cells are crucial for elucidating various physiological and pathological processes. Cells are found to exhibit a universal power-law rheological behavior at low frequencies. While they behave in a different manner at high frequency regimes, which leaves the transition region largely unexplored.

View Article and Find Full Text PDF

Elesclomol-Copper combination synergistically targets mitochondrial metabolism in cancer stem cells to overcome chemoresistance in pancreatic ductal adenocarcinoma.

Mol Ther

September 2025

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, partly due to cancer stem cells (CSCs) that drive progression and treatment resistance. We explored the therapeutic potential of inducing cuproptosis, a copper-dependent regulated cell death, in CSC-enriched PDAC models. Using human and murine PDAC models, we evaluated elesclomol, a copper transport enhancer.

View Article and Find Full Text PDF