Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Introduction: Microbial metabolites represent a valuable source of bioactive compounds with promising anticancer properties. However, conventional drug discovery approaches are time-intensive and resource-demanding.
Methods: Recent developments in artificial intelligence (AI), machine learning (ML), molecular docking, and quantitative structure-activity relationship (QSAR) modeling have been examined for their role in the identification and optimization of microbial metabolites.
Results: AI-driven approaches have significantly enhanced compound screening and prediction of therapeutic efficacy. Nanocarrier-based drug delivery systems have improved the bioavailability, specificity, and stability of microbial metabolites while minimizing systemic toxicity. Despite these advancements, challenges remain in clinical translation due to the lack of in vivo validation and comprehensive pharmacokinetic data.
Discussion: This review highlights the integration of advanced computational tools and nanotechnology in accelerating the discovery and delivery of microbial-derived anticancer agents.
Conclusion: Future directions should focus on integrating AI with synthetic biology to engineer microbial strains capable of producing enhanced bioactive compounds. Additionally, leveraging nanotechnology could refine targeted delivery mechanisms. A deeper understanding of molecular pathways and drug resistance mechanisms is essential to support the development of combination therapies. Overall, microbialderived compounds hold substantial potential in advancing precision oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/0118715206399680250814104403 | DOI Listing |