98%
921
2 minutes
20
The links between intraspecific trait variation and community assembly remain little studied, partially due to the lack of statistical methods to jointly model intraspecific trait variation and species abundances at the community level. Here, we extend the joint species distribution modeling (JSDM) framework into the joint species-trait distribution modeling (JSTDM) framework to explicitly link species abundances to phenotypic variation in traits for multiple species simultaneously. Using a case study of 65 tundra plant species abundances and 3 key functional traits measured across 325 sites, we show how the JSTDM approach (1) estimates the statistical associations among species abundances, species-level traits, and site-level traits, relative to environmental variation; (2) improves predictions on trait variation by using information on species abundances; and (3) generates hypotheses about trait-driven community assembly mechanisms. The JSTDM methodology presented in this study allows assessing the interplay between species abundances and traits at the community level, providing the much needed modeling tools to quantify the role of phenotypic trait variation in eco-evolutionary community assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411695 | PMC |
http://dx.doi.org/10.1002/ecy.70174 | DOI Listing |
Biotechnol Lett
September 2025
The United Graduate School of Agricultural Science, Iwate University, Ueda-3, Morioka, Iwate, 020-8550, Japan.
Plasmalogens are a subclass of glycerophospholipids characterized by a vinyl-ether bond at the sn-1 position; they play several physiological roles including membrane stabilization, antioxidant activity, and signal transduction. While choline, ethanolamine, serine, and glycerol plasmalogens (PlsCho, PlsEtn, PlsSer, and PlsGro) are naturally abundant, inositol plasmalogens (PlsIns) are rare. In contrast to the limited occurrence of PlsIns, phosphatidylinositol is a biologically crucial lipid, and its enzymatic biosynthesis from phosphatidylcholine has been extensively studied.
View Article and Find Full Text PDFChaos
September 2025
School of Engineering, University of Applied Sciences of Western Switzerland HES-SO, CH-1950 Sion, Switzerland.
We investigate species-rich mathematical models of ecosystems. While much of the existing literature focuses on the properties of equilibrium fixed-points, persistent dynamics (e.g.
View Article and Find Full Text PDFLangmuir
September 2025
Microplastics Research Center, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod 173003, Russia.
Microplastics, tiny fragments resulting from the degradation of plastic waste, are abundant in water, air, and soil and are currently recognized as a global environmental problem. There is also growing evidence that nanosized microplastics (nanoplastics) can be hazardous to living species. Unlike most experimental methods, computer modeling is particularly well suited to studying the effects of such nanoplastics.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Environmental Microbiology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Unlabelled: The genus includes opportunistic pathogens inhabiting engineered aquatic ecosystems, where managing their presence and abundance is crucial for public health. In these environments, interact positively or negatively with multiple members of the microbial communities. Here, we identified bacteria and compounds with -antagonistic properties.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Diagnostic Medicine and Pathobiology, Kansas State University, , Manhattan, Kansas, USA.
Liver abscesses (LA) in cattle are a polymicrobial infection, and the major bacterial pathogens associated are as follows: subsp. (FNN), subsp. (FNF), (TP), and (SE).
View Article and Find Full Text PDF