Reduced storage direct tensor ring decomposition for convolutional neural networks compression.

Neural Netw

Faculty of Electronics, Photonics, and Microsystems, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, Wroclaw, 50-370, Poland.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Convolutional neural networks (CNNs) are among the most widely used machine learning models for computer vision tasks, such as image classification. To improve the efficiency of CNNs, many compression approaches have been developed. Low-rank methods approximate the original convolutional kernel with a sequence of smaller convolutional kernels, leading to reduced storage and time complexities. In this study, we propose a novel low-rank CNN compression method that is based on reduced storage direct tensor ring decomposition (RSDTR). The proposed method offers a higher circular mode permutation flexibility, and it is characterized by large parameter and FLOPS compression rates, while preserving a good classification accuracy of the compressed network. The experiments, performed on the CIFAR-10 and ImageNet datasets, clearly demonstrate the efficiency of RSDTR in comparison to other state-of-the-art CNN compression approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2025.107994DOI Listing

Publication Analysis

Top Keywords

reduced storage
12
storage direct
8
direct tensor
8
tensor ring
8
ring decomposition
8
convolutional neural
8
neural networks
8
compression approaches
8
cnn compression
8
compression
5

Similar Publications

Treatment of seeds with cold atmospheric pressure plasma (CAPP) is in its proof-of-concept phase with regard to its effect on germination and plant growth. To increase the germination of hardseeded red clover (Trifolium pratense L.), seeds are usually scarified, which is time-consuming and labour-intensive.

View Article and Find Full Text PDF

Formation of surfaces oxide vacancies in porous ZnCoO nanoflowers for enhanced energy storage performance.

Discov Nano

September 2025

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Integrated Circuit, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, 450052, China.

A cost-effective and large-scale method for synthesizing ZnCoO nanoflowers with surface oxygen vacancies as electrode materials for supercapacitors is presented. The existence of oxygen vacancies on the surface of the ZnCoO nanoflowers has been confirmed through X-ray photoelectron spectroscopy (XPS). The energy bands and density of states (DOS) of ZnCoO are examined using density functional theory, revealing that treatment with NaBH reduces the band gap of ZnCoO while increasing the DOS near the Fermi level compared to pristine ZnCoO.

View Article and Find Full Text PDF

In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.

View Article and Find Full Text PDF

Effect of C-Terminal Residue on the Phase Behavior and Properties of β-Sheet Forming Self-Assembling Peptide Hydrogels.

Biomacromolecules

September 2025

Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.

This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.

View Article and Find Full Text PDF