Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study investigates the sensitivity of ultrasonic phase velocity and attenuation statistics to grain size distribution types, specifically monomodal and bimodal, in cubic finite-sized polycrystals with identical overall arithmetic or volumetric grain size statistics. A large ensemble of synthetic polycrystalline microstructures was generated, and their ultrasonic responses were computed using a modified spectral function method. The latter enables estimation of both effective phase velocities and attenuation coefficients while rigorously accounting for finite specimen dimensions and statistical variabilities across different samples. When samples share identical grain size statistics based on arithmetic averages, bimodal and monomodal specimens exhibit pronounced differences in the first-order statistical moments of ultrasonic attenuation, while their mean phase velocities remain virtually similar. In contrast, the second-order statistical moments of the phase velocities exhibit more pronounced differences, primarily influenced by the number of grains interacting with the waves. Typically, the bimodal sample shows intermediate standard deviations of the ultrasonic phase velocities, while monomodal samples with matching volumetric and arithmetic grain size statistics yield the highest and lowest variabilities, respectively. These findings suggest that the statistical analysis of ultrasonic responses offers a promising non-destructive methodology for identifying subtle microstructural variations, particularly higher-order characteristics beyond the average grain size, such as the shape of the grain size distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultras.2025.107800DOI Listing

Publication Analysis

Top Keywords

grain size
28
phase velocities
20
size distribution
12
statistical moments
12
size statistics
12
moments ultrasonic
8
ultrasonic phase
8
ultrasonic responses
8
exhibit pronounced
8
pronounced differences
8

Similar Publications

Plasma membrane maize Gγ protein MGG4 positively regulates seed size mainly through influencing kernel width.

Plant Cell Rep

September 2025

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.

Plasma membrane Gγ protein MGG4, the candidate for maize yield QTL, positively regulates seed size mainly through affecting kernel width.

View Article and Find Full Text PDF

This study investigates the vertical profiles, pollution status and ecological risks of heavy metal(loid)s contamination in three sediment cores (N21, N03, and 38002) from the North Yellow Sea (NYS), with a focus on the influence of grain size effects on sedimentary profiles. The results revealed distinct vertical distribution patterns of heavy metal(loid)s content among the three sediment cores. Enrichment Factor (EF) and Geo-accumulation Index (I) assessments identified Sb as significantly enriched, indicating anthropogenic influence, whereas Co, Cr, Cu, Ni, and Zn primarily originated from natural weathering.

View Article and Find Full Text PDF

Mechanisms of Enhanced Efficiency and Stability in Perovskite Luminescence via Rb Interstitial Doping.

J Phys Chem Lett

September 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.

View Article and Find Full Text PDF

Plasticity Mechanisms in Nanostructured Cubic Boron Nitride: Internal Defects and Amorphous Layers.

ACS Appl Mater Interfaces

September 2025

School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.

Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.

View Article and Find Full Text PDF

Purpose: The number of oxygen vacancies in quartz measured by electron spin resonance (ESR) as the intensity of the E' center has been used to investigate the provenance of the sediments and has been found to be a good proxy in discussing the direction and intensity of the wind system in the past. While its temporal variations have been examined using marine sediments. The present study aimed to show that terrestrial sediments are also useful for such studies on climate change when it is continuous.

View Article and Find Full Text PDF