Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Understanding the cognitive phenotypes of elite athletes offers a unique perspective on the intricate interplay between neurological traits and high-performance behaviors. This study aligns with advancing neuroinformatics by proposing a novel framework designed to capture and analyze the multi-dimensional dependencies of cognitive phenotypes using systems neuroscience methodologies. Traditional approaches often face limitations in disentangling the latent factors influencing cognitive variability or in preserving interpretable data structures.

Methods: To address these challenges, we developed the Latent Cognitive Embedding Network (LCEN), an innovative model that combines biologically inspired constraints with state-of-the-art neural architectures. The model features a specialized embedding mechanism for disentangling latent factors and a tailored optimization strategy incorporating domain-specific priors and regularization techniques.

Results: Experimental evaluations demonstrate LCEN's superiority in predicting and interpreting cognitive phenotypes across diverse datasets, providing deeper insights into the neural underpinnings of elite performance.

Discussion: This work bridges computational modeling, neuroscience, and psychology, contributing to the broader understanding of cognitive variability in specialized populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401962PMC
http://dx.doi.org/10.3389/fninf.2025.1557879DOI Listing

Publication Analysis

Top Keywords

cognitive phenotypes
16
phenotypes elite
8
elite athletes
8
systems neuroscience
8
understanding cognitive
8
disentangling latent
8
latent factors
8
cognitive variability
8
cognitive
7
leveraging neuroinformatics
4

Similar Publications

Engineering functional exosomes represents a cutting-edge approach in biomedicine, holding the promise to transform targeted therapy. However, challenges such as achieving consistent modification and scalability have limited their wider adoption. Herein, we introduce a universal and effective strategy for engineering multifunctional exosomes through cell fusion.

View Article and Find Full Text PDF

In this study, we investigated the therapeutic potential of calycosin (from Astragalus) in Alzheimer's disease (AD), focusing on ferroptosis modulation. APP/PS1 mice received 40 mg/kg calycosin for 3 months. Cognitive function was assessed via Morris water maze test.

View Article and Find Full Text PDF

We describe the rationale, methodology, and design of the Boston University Alzheimer's Disease Research Center (BU ADRC) Clinical Core (CC). The CC characterizes a longitudinal cohort of participants with/without brain trauma to characterize the clinical presentation, biomarker profiles, and risk factors of post-traumatic Alzheimer's disease (AD) and AD-related dementias (ADRD), including chronic traumatic encephalopathy (CTE). Participants complete assessments of traumatic brain injury (TBI) and repetitive head impacts (RHIs); annual Uniform Data Set (UDS) and supplementary evaluations; digital phenotyping; annual blood draw; magnetic resonance imaging (MRI) and lumbar puncture every 3 years; electroencephalogram (EEG); and amyloid and/or tau positron emission tomography (PET) on a subset.

View Article and Find Full Text PDF

A family history of depression is a well-documented risk factor for offspring psychopathology. However, the genetic mechanisms underlying the intergenerational transmission of depression remain unclear. We used genetic, family history, and diagnostic data from 11,875 9-10 year-old children from the Adolescent Brain Cognitive Development study.

View Article and Find Full Text PDF

Background And Objectives: Years before diagnosis of Parkinson disease (PD), dementia with Lewy bodies (DLB), or multiple system atrophy (MSA), mild prodromal manifestations can be detected. Longitudinal follow-up of people with prodromal synucleinopathy, particularly idiopathic/isolated REM sleep behavior disorder (iRBD), enables in-depth clinical phenotyping of early disease, which could facilitate stratification for clinical trials, provide the definition of appropriate end points, or predict phenoconversion more precisely. The aim of this study was to update and expand on previous studies assessing clinical evolution from iRBD to clinically diagnosed disease, up to 14 years before diagnosis.

View Article and Find Full Text PDF