Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Immunotherapy has been used in the clinical management of TNBC. While BRCA1 mutations are associated with immunotherapy response, the therapeutic outcomes in TNBC patients are not promising.

Methods: This study integrated spatial, single-cell, and bulk RNA-seq data to explore the role of BRCA1 in reshaping the TNBC microenvironment. Through multi-scale analysis, phenotype changes and potential biomarkers in cancer-associated fibroblasts (CAF) were identified. To validate these findings at the protein level, we employed high-resolution, label-free proteomics sequencing in our in-house cohort, providing critical real-world validation. A predictive system for response to ICIs was constructed through the step-by-step machine learning pipeline.

Results: Compared to BRCA1 mutant patients, BRCA1 wild-type patients experienced increased T-cell exhaustion and dendritic cell tolerance. We identified a MEG3+ pre-CAF subgroup via pseudo-time analysis. Moreover, ISG15 may serve as an immunoregulatory biomarker, and the proposed predictive model demonstrated potential in forecasting immunotherapy response, although further validation is needed.

Conclusions: This study highlighted the cellular heterogeneity of TNBC and identified ISG15 as a candidate biomarker potentially associated with treatment response. The ISG15-based predictive system might provide a robust framework for predicting ICI response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401915PMC
http://dx.doi.org/10.3389/fonc.2025.1538574DOI Listing

Publication Analysis

Top Keywords

immunotherapy response
12
multi-scale analysis
8
predictive system
8
response
6
resolving tumor
4
tumor microenvironment
4
microenvironment heterogeneity
4
heterogeneity forecast
4
immunotherapy
4
forecast immunotherapy
4

Similar Publications

Modified hyaluronic acid (HA) biomaterials have received considerable attention in recent years, especially in developing innovative therapeutic strategies for targeted disease interventions. HA serves to shield therapeutics from the physiological environment, while enabling safe delivery and promoting uptake into specific cells. As a hydrophilic chain polymer, HA is readily chemically modified into functional biomaterials for drug delivery and cancer immunotherapy.

View Article and Find Full Text PDF

High-throughput screening identifies a dual-activity inhibitor of OXCT1 for hepatocellular carcinoma therapy.

Bioorg Chem

September 2025

State Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China;

3-Oxoacid CoA-transferase 1 (OXCT1) plays a crucial role in hepatocellular carcinoma (HCC) progression through its ketolytic and succinyltransferase activities. Despite its potential as a therapeutic target, no small molecules have been developed to inhibit the dual enzymatic activities of OXCT1 specifically. In this study, our structural analysis revealed that the active sites for both enzymatic functions of OXCT1 are located in the same pocket.

View Article and Find Full Text PDF

Despite therapeutic advances, multiple myeloma (MM) remains incurable, especially in relapsed/refractory (R/R) cases. B-cell maturation antigen (BCMA) is a key target for novel immunotherapies, including chimeric antigen receptor T-cell (CAR-T) therapies and bispecific T-cell engagers (BiTEs), which vary in efficacy, toxicity, and accessibility. To compare the efficacy and safety of BCMA-directed CAR-T therapies and BiTEs in R/R MM through a systematic review and meta-analysis.

View Article and Find Full Text PDF

Dendritic cells: understanding ontogeny, subsets, functions, and their clinical applications.

Mol Biomed

September 2025

National Key Laboratory of Immunity and Inflammation & Institute of Immunology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China.

Dendritic cells (DCs) play a central role in coordinating immune responses by linking innate and adaptive immunity through their exceptional antigen-presenting capabilities. Recent studies reveal that metabolic reprogramming-especially pathways involving acetyl-coenzyme A (acetyl-CoA)-critically influences DC function in both physiological and pathological contexts. This review consolidates current knowledge on how environmental factors, tumor-derived signals, and intrinsic metabolic pathways collectively regulate DC development, subset differentiation, and functional adaptability.

View Article and Find Full Text PDF

Background: Trials of neoadjuvant chemoimmunotherapy (chemoIO) have changed the standard of care for resectable nonsmall cell lung cancer (NSCLC). This study characterizes the outcomes of off-trial patients who received treatment with neoadjuvant chemoIO.

Methods: The authors analyzed records of patients with stage IB-III NSCLC who received neoadjuvant chemoIO with an intent to proceed to surgical resection at three US academic institutions.

View Article and Find Full Text PDF