Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Over time, cells in the brain and in the body accumulate damage, which contributes to the ageing process. In the human brain, the prefrontal cortex undergoes age-related changes that can affect cognitive functioning later in life. Here, using single-nucleus RNA sequencing (snRNA-seq), single-cell whole-genome sequencing (scWGS) and spatial transcriptomics, we identify gene-expression and genomic changes in the human prefrontal cortex across lifespan, from infancy to centenarian. snRNA-seq identified infant-specific cell clusters enriched for the expression of neurodevelopmental genes, as well as an age-associated common downregulation of cell-essential homeostatic genes that function in ribosomes, transport and metabolism across cell types. Conversely, the expression of neuron-specific genes generally remains stable throughout life. These findings were validated with spatial transcriptomics. scWGS identified two age-associated mutational signatures that correlate with gene transcription and gene repression, respectively, and revealed gene length- and expression-level-dependent rates of somatic mutation in neurons that correlate with the transcriptomic landscape of the aged human brain. Our results provide insight into crucial aspects of human brain development and ageing, and shed light on transcriptomic and genomic dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-025-09435-8DOI Listing

Publication Analysis

Top Keywords

human brain
16
transcriptomic genomic
8
genomic changes
8
prefrontal cortex
8
spatial transcriptomics
8
human
5
brain
5
single-cell transcriptomic
4
changes ageing
4
ageing human
4

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

This study aimed to identify brain activity modulations associated with different types of visual tracking using advanced functional magnetic resonance imaging techniques developed by the Human Connectome Project (HCP) consortium. Magnetic resonance imaging data were collected from 27 healthy volunteers using a 3-T scanner. During a single run, participants either fixated on a stationary visual target (fixation block) or tracked a smoothly moving or jumping target (smooth or saccadic tracking blocks), alternating across blocks.

View Article and Find Full Text PDF

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

Thirty years of SPM-BrainMap synergy: making and mining coordinate-based literature.

Cereb Cortex

August 2025

Research Imaging Institute, University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, United States.

Statistical Parametric Mapping (SPM) adheres to rigorous methodological standards, including: spatial normalization, inter-subject averaging, voxel-wise contrasts, and coordinate reporting. This rigor ensures that a thematically diverse literature is amenable to meta-analysis. BrainMap is a community database (www.

View Article and Find Full Text PDF

SPM-30 years and beyond.

Cereb Cortex

August 2025

Functional Imaging Laboratory (FIL), Department of Imaging Neuroscience, University College London, 12 Queen Square, London WC1N 3AR, United Kingdom.

This paper marks the 30th anniversary of the Statistical Parametric Mapping (SPM) software and the journal Cerebral Cortex: two modest milestones that mark the inception of cognitive neuroscience. We take this opportunity to reflect on SPM, a generation after its introduction. Each of the authors of this paper-who represent a small selection of the many contributors to SPM-were asked to consider lessons learned, what has gone well, and where there is room for improvement in future development.

View Article and Find Full Text PDF