98%
921
2 minutes
20
Recycling cellulase by using pH-responsive additives is an effective strategy for reducing the cost of lignocellulosic enzymatic hydrolysis. Traditional pH-responsive additives have limitations, including an insensitive pH response or weak binding to enzyme proteins, which restrict their industrial applications. The strong binding property of lignin to enzyme proteins was used to construct a series of ultra-high pH-responsive lignin-modified copolymers containing amide and carboxylic acid groups (L-CPM), which were obtained by using lignin cross-link pH-sensitive prepolymers containing amide and carboxylic acid groups (CPM). The pH responsiveness of L-CPM was used to recycle cellulase. 3.0 g/L of L-CPM-3 was added to the enzymatic hydrolysis system of corncob residues (CCR) (pH = 5.0). After enzymatic hydrolysis, 60 % of the cellulase amount was saved when adjusting the pH value of the hydrolyzate from 5.0 to 4.4. In this work, ultra-high pH-responsive L-CPM was used to recover cellulase, achieving efficient cellulase recycling in a narrow pH range. This provides a new strategy for reducing the cost of lignocellulosic enzymatic hydrolysis and realizing high-value utilization of industrial lignin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2025.147299 | DOI Listing |
J Sci Food Agric
September 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China.
Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.
Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.
Food Res Int
November 2025
Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; Institute of Leisure Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China. Electronic address:
Hen eggs are rich in proteins, which are a potential source of bioactive peptides. Incubation of fertilized egg changes the egg protein, which may affect the properties and activity of derived peptides. To understand these metamorphoses, hydrolysate fractions of 10-day incubated chicken embryo (CE) proteins of 0.
View Article and Find Full Text PDFFood Res Int
November 2025
Ciência e Tecnologia de Alimentos, Centro de Ciências Agrárias, Universidade Estadual de Londrina, Celso Garcia Cid, PR-445, Km 380 - University Campus, Londrina, PR 86057-970, Brazil. Electronic address:
The objective of the research was to employ extrusion to increase the yield of simulated gastrointestinal digestion of protein corn gluten meal (CG). A single-screw extruder and a full factorial design with two center points were used. The optimal extrusion parameters were 40 % sample moisture, 140 °C and 54 rpm, resulting in a gastrointestinal digestion yield of 37.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Life and Health Sciences, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, Hubei 430
This study aimed to examine the impact of composite enzymatic treatment on the physicochemical properties of oat milk, which would provide an effective strategy to improve the stability of plant-based milk. Oat milks treated with individual α-amylase or in combination with the protein glutaminase were produced. The result indicated that composite enzyme treatment significantly changed the physicochemical properties and significantly improved the stability of oat milk.
View Article and Find Full Text PDFFood Res Int
November 2025
Department of Agriculture and Forest Sciences (DAFNE), Tuscia University, via S. Camillo de Lellis snc, 01100 Viterbo, Italy.
The demand for natural sweeteners as alternatives to sucrose is growing rapidly, driving research into enzymatic bioconversion methods for more efficient production. Glycyrrhizin (GL) is approximately 190 times sweeter than sucrose, but its excessive consumption has been linked to adverse health effects. Its hydrolysis yields glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG), a compound nearly 1000 times sweeter than sucrose and with improved sensory and solubility properties.
View Article and Find Full Text PDF