98%
921
2 minutes
20
Background: Chronic spontaneous urticaria (CSU) is an immune-driven skin condition with a multifaceted and not yet fully understood pathogenesis. Although substantial research has been conducted, viable therapeutic targets are still scarce. Studies indicate that disruptions in lipid metabolism significantly influence the development of immune-related disorders. Nevertheless, the precise relationship between lipid metabolism and CSU remains underexplored, warranting further investigation.
Methods: We obtained the GSE72540 and GSE57178 datasets from the Gene Expression Omnibus (GEO) repository. For the GSE72540 dataset, we identified differentially expressed genes (DEGs) and performed weighted gene co-expression network analysis (WGCNA) on them. The identified DEGs were cross-referenced with lipid metabolism-related genes (LMRGs). To identify hub genes, we constructed a protein-protein interaction (PPI) network. These hub genes were validated using the GSE57178 dataset to identify potential diagnostic markers. Additionally, gene set enrichment analysis (GSEA) and receiver operating characteristic (ROC) curve analysis were employed to evaluate their diagnostic potential. In the CSU mouse model, we further validated the expression levels of these hub genes. Finally, untargeted metabolomics was conducted to detect lipid metabolism-related metabolites in the serum of CSU patients.
Result: Using bioinformatics analysis, three hub genes were identified: , , and . In skin tissues from CSU-like mouse models, the mRNA levels of and were significantly upregulated compared to the control group. Additionally, untargeted metabolomics revealed 60 distinct lipid metabolites, with a marked increase in arachidonic acid levels observed in the CSU group.
Conclusion: and are key hub genes for CSU, and arachidonic acid can serve as a potential serum biomarker.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399643 | PMC |
http://dx.doi.org/10.3389/fgene.2025.1550205 | DOI Listing |
J Burn Care Res
September 2025
Department of Burn Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
Background: Burn injuries trigger complex immune responses and gene expression changes, impacting wound healing and systemic inflammation. Understanding these changes is crucial for identifying biomarkers and therapeutic targets.
Methods: We analyzed two GEO datasets (wound tissue (GSE8056) and blood (GSE37069)) to identify differentially expressed genes (DEGs) in burn injury samples versus controls.
Int J Endocrinol
August 2025
Department of Geriatrics, Zhongshan Hospital Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China.
Osteoporosis is a progressive bone disease characterized by reduced bone density and deterioration of bone microarchitecture, predominantly affecting the elderly population. The ongoing COVID-19 pandemic has introduced additional challenges in osteoporosis management, potentially due to systemic inflammation and direct viral impacts on bone metabolism. This study aims to identify common differentially expressed genes (DEGs) and key molecular pathways shared between osteoporosis and COVID-19, with the goal of uncovering potential therapeutic targets through bioinformatics analysis.
View Article and Find Full Text PDFFront Neurosci
August 2025
School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
Background: Ischemic stroke (IS), the leading stroke subtype (∼87%), arises from vascular occlusions, triggering brain necrosis through ischemia-reperfusion injury. Ferroptosis, an iron-driven cell death via Fe-mediated lipid peroxidation, is implicated in IS pathology. This study demonstrates that enoyl-coA hydrolase 1 (ECH1) may serve as a peripheral biomarker and therapeutic target for IS based on ferroptosis signaling.
View Article and Find Full Text PDFFront Pharmacol
August 2025
School of Health Management, Zhejiang Pharmaceutical University, Ningbo, China.
Background: Acute and long-term mental health disorders correlate with coronavirus disease 2019 (COVID-19). The underlying mechanisms responsible for the coexistence of COVID-19 and depression remain unclear, and more research is needed to find hub genes and effective therapies. The main objective of this study was to evaluate gene-expression profiles and, identify key genes, and discovery potential therapeutic agents for co-occurrence in COVID-19 and major depressive disorder (MDD).
View Article and Find Full Text PDFOncol Res
September 2025
Department of General Surgery, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
Background: Colorectal cancer (CRC) is common and deadly, often leading to metastasis, challenging treatment, and poor outcomes. Understanding its molecular basis is crucial for developing effective therapies.
Aims: This study aimed to investigate the role of Myosin Heavy Chain 11 (MYH11) in CRC progression, especially its effects on epithelial-mesenchymal transition (EMT) and cell behavior, and to explore its potential regulation by the EMT transcription factor zinc finger E-box binding homeobox 1 (ZEB1).