A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Fast-Charging and Long-Cycle Sodium-Ion Batteries Enabled by an Ultra-Stable Carbon Anode. | LitMetric

Fast-Charging and Long-Cycle Sodium-Ion Batteries Enabled by an Ultra-Stable Carbon Anode.

Adv Mater

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.

Published: September 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The realization of rapid-charging sodium-ion batteries (SIBs) with exceptional power density represents a pivotal challenge for next-generation electric vehicles. Currently, carbonaceous anodes are considered the most technologically mature yet rate-limited candidate approaching commercialization. To address the bottlenecks of slow ion transport and interfacial instability in conventional carbon architectures, a hierarchical anode material has been designed by incorporating g-CN electronic inert layer onto hollow carbon spheres (CN@HCS). This structure not only facilitates Na⁺ diffusion but also effectively suppresses side reactions, while enabling selective screening of electrons. As a result, the material exhibits outstanding rate capabilities, maintaining high performance even at a current density as high as 40 A g, and demonstrates remarkable cycling stability over 40 000 cycles with negligible capacity decay. Consequently, the full battery enables rapid charging within 0.1 h and delivers a prolonged discharge duration of up to 1 h, accompanied by a high power density of 21 600 W kg . This work represents a significant advancement in the development of advance anode materials for SIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202509953DOI Listing

Publication Analysis

Top Keywords

sodium-ion batteries
8
power density
8
fast-charging long-cycle
4
long-cycle sodium-ion
4
batteries enabled
4
enabled ultra-stable
4
ultra-stable carbon
4
carbon anode
4
anode realization
4
realization rapid-charging
4

Similar Publications