Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Machine learning (ML) and deep learning (DL) models in healthcare traditionally rely on server-centric architectures, where sensitive patient data is transmitted to external servers for processing via frameworks like Flask, raising significant privacy concerns. This work demonstrates a privacy-preserving approach by executing healthcare prediction models entirely within the web browser.

Methods: Our approach leverages existing browser-based machine learning and deep learning technologies such as TensorFlow.js and ONNX Runtime Web, along with direct JavaScript implementations, to ensure all computations remain on the client side. We showcase three implementation strategies based on model complexity: direct JavaScript implementation for simple equation-based models, ONNX-based conversion and execution for medium-complexity models like Random Forest and finally TensorFlow.js deployment for complex deep learning models such as Optimized Convolutional Neural Networks.

Results: Our results indicate that client-side deployment is both feasible and effective for healthcare prediction models, preserving original performance metrics while offering substantial privacy benefits.

Conclusion: This approach guarantees patient data never leaves the user's device, eliminating risks associated with data transmission and making it particularly advantageous in healthcare settings where data confidentiality is critical, while also supporting offline functionality.

Download full-text PDF

Source
http://dx.doi.org/10.3233/SHTI251408DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning models
12
deep learning
12
learning deep
8
patient data
8
healthcare prediction
8
prediction models
8
direct javascript
8
models
7
learning
6

Similar Publications

Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.

Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Early prediction of orthodontic gingival enlargement using S100A4: a biomarker-based risk stratification model.

Odontology

September 2025

Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.

Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).

View Article and Find Full Text PDF

Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.

Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.

View Article and Find Full Text PDF