98%
921
2 minutes
20
Antimalarial drugs are critical for controlling malaria, but the emergence of drug resistance poses a significant challenge to global eradication efforts. This study explores strategies to minimize resistance prevalence and improve malaria control, particularly through the use of mass drug administration (MDA) in combination with antimalarial drugs. We develop a compartmental mathematical model that incorporates asymptomatic, paucisymptomatic, and clinical states of infection and evaluates the impact of resistance mutations on transmission dynamics. The model includes both treated and untreated states among infected and recovered individuals, with a focus on optimizing control strategies through MDA and antimalarial treatment. A global sensitivity analysis identifies the critical factors that influence malaria dynamics, including MDA coverage, treatment access for different infection states, the probability of mutation from treated sensitive human infections, to treated resistant human infections and the initial prevalence of resistance. The model is extended to include optimal control strategies that provide time-dependent control interventions for treatment and MDA. Intuitively, when the mutation rate is relatively low, the optimal strategy combines the use of antimalarial drugs and MDA, with a gradual decrease in antimalarial drug use over time, ensuring sustainable malaria control. In contrast, at higher mutation rates, the strategy prioritizes broader deployment of MDA while significantly reducing reliance on antimalarial to minimize the risk of resistance developing. Numerical simulations of the optimal control problem reinforce the importance of strategic intervention in mitigating drug resistance. This study contributes to understanding the role of MDA and treatment strategies in the control of malaria, with implications for optimizing malaria control programs in endemic regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2025069 | DOI Listing |
Acta Trop
September 2025
Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;. Electronic address:
Malaria is still one of the most important parasitic diseases with millions of cases reported globally every year. Combination therapies of artemisinin or its derivatives, with a partner drug, are the first-and second-line treatments for malaria. However, recently, artemisinin partial resistance or tolerance has emerged and emphasizes the need for new therapeutic approaches to malaria.
View Article and Find Full Text PDFActa Trop
September 2025
Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health
Background: The increasing recognition of zoonotic malaria, particularly from Plasmodium species infecting non-human primates (NHP), poses significant diagnostic challenges. Performance of human malaria Rapid Diagnostic Tests (RDTs) has not been evaluated in simian malaria.
Methods: A total of 131 blood samples from NHP hosts with confirmed malaria were analyzed using 14 different commercially available RDTs, detecting the antigens P.
Acta Trop
September 2025
Université Nazi BONI (UNB), Unité de Formation et de Recherche en Sciences de la Vie et de la Terre, Bobo-Dioulasso, Burkina Faso; Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Bobo-Dioulasso, Burkina Faso; Institut National Santé Publique, Centre MURAZ, Bobo-Di
An entomological surveillance was carried out in two districts of western Burkina Faso to assess the impact of mass-distributed next-generation long-lasting insecticidal nets (LLINs) (Piperonyl Butoxide (PBO) LLINs and Interceptor® G2) on Anopheles gambiae s.l. populations, focusing on insecticide resistance trends and residual malaria transmission patterns, along with their environmental and operational determinants.
View Article and Find Full Text PDFMol Genet Genomics
September 2025
Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
Mosquito reproductive biology is an underexplored area with potential for developing novel vector control strategies. In this study, we investigated the role of the testis-specific serine/threonine-protein kinase (tssk) family, an essential regulator of spermiogenesis in mammals, in mosquitoes. We identified tssk homologues, As_tssk3 and Aea_tssk1, in Anopheles stephensi and Aedes aegypti, respectively and analyzed their expression across different developmental stages.
View Article and Find Full Text PDFEur J Med Chem
August 2025
Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133, Milan, Italy.
Vector-borne parasitic diseases (VBPDs) represent a major global public health concern, with human African trypanosomiasis (HAT), Chagas disease, leishmaniasis, and malaria collectively threatening millions of people, particularly in developing regions. Climate change may further influence their transmission and geographic spread, increasing the global burden. As drug resistance continues to rise, there is an urgent need for novel therapeutic agents to expand treatment options and limit disease progression.
View Article and Find Full Text PDF