Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Smoking cessation is the only evidence-based approach to reducing tobacco-related health risks, yet traditional interventions suffer from limited coverage. Although digital interventions show promise, their comparative efficacy across methodological frameworks and technology types remains unclear. Here we assessed digital interventions versus standard care via frequentist random-effects network meta-analysis of 152 randomized controlled trials (48.8% USA, 7.5% China). Interventions were categorized by methodology and technology type, with cross-matched subgroup analyses. Results showed that personalized interventions significantly improved smoking cessation rates compared with standard care (relative risk (RR) 1.86, 95% confidence interval (CI) 1.54-2.24), while group-customized interventions were more effective (RR 1.93, 95% CI 1.30-2.86) compared with standard digital interventions (RR 1.50, 95% CI 1.31-1.72). Among the various technology types, text message-based interventions were the most effective (RR 1.63, 95% CI 1.38-1.92). Intervention effectiveness was also influenced by age, with middle-aged individuals benefitting more than younger individuals. Short- and medium-term interventions were more effective than long-term interventions. Sensitivity analyses further confirmed these low-to-moderate findings. However, this study has some limitations, including methodological heterogeneity, potential bias and inconsistent definitions of numerical interventions. In addition, long-term follow-up data remain limited. Future studies require large-scale trials to assess long-term sustainability and population-specific responses, as well as standardization of methods and integration of data at the individual level.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-025-02295-2DOI Listing

Publication Analysis

Top Keywords

digital interventions
16
interventions
12
smoking cessation
12
interventions effective
12
network meta-analysis
8
technology types
8
standard care
8
compared standard
8
efficacy digital
4
interventions smoking
4

Similar Publications

Toward Human-Centered Artificial Intelligence for Users' Digital Well-Being: Systematic Review, Synthesis, and Future Directions.

JMIR Hum Factors

September 2025

Seidenberg School of Computer Science and Information Systems, Pace University, New York City, NY, United States.

Background: As information and communication technologies and artificial intelligence (AI) become deeply integrated into daily life, the focus on users' digital well-being has grown across academic and industrial fields. However, fragmented perspectives and approaches to digital well-being in AI-powered systems hinder a holistic understanding, leaving researchers and practitioners struggling to design truly human-centered AI systems.

Objective: This paper aims to address the fragmentation by synthesizing diverse perspectives and approaches to digital well-being through a systematic literature review.

View Article and Find Full Text PDF

Background: Owing to the unique characteristics of digital health interventions (DHIs), a tailored approach to economic evaluation is needed-one that is distinct from that used for pharmacotherapy. However, the absence of clear guidelines in this area is a substantial gap in the evaluation framework.

Objective: This study aims to systematically review and compare the economic evaluation literature on DHIs and pharmacotherapy for the treatment of depression.

View Article and Find Full Text PDF

Background: Breast cancer treatment, particularly during the perioperative period, is often accompanied by significant psychological distress, including anxiety and uncertainty. Mobile health (mHealth) interventions have emerged as promising tools to provide timely psychosocial support through convenient, flexible, and personalized platforms. While research has explored the use of mHealth in breast cancer prevention, care management, and survivorship, few studies have examined patients' experiences with mobile interventions during the perioperative phase of breast cancer treatment.

View Article and Find Full Text PDF

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

The causal journey: from maps to mechanisms and digital twins.

Cereb Cortex

August 2025

Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France.

Over three decades, statistical parametric mapping has transformed neuroimaging from descriptive mapping to causal inference, placing generative models at the core of causal explanations for brain function. It inspired to a large degree The Virtual Brain, which builds subject-specific digital twins from multimodal data, enabling brain simulations and exploration. Both frameworks converge at parameter estimation, where model and data meet, providing the mathematical manifestation of cause-effect in pathophysiology.

View Article and Find Full Text PDF