Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The assembling and reconfiguration of the integrated devices are of great importance to extend the capability of photonic chips based on top-down fabrication approaches. Here, we demonstrate a fully-programmable organic micro-actuator for precise manipulation of on-chip microstructures. Controlled by a low-power laser, the micro-actuator achieves a 30 nm motion step size, and shows the capability to traverse various chip substrates, overcome obstacles, and push microspheres to target locations. The micro-actuator is applied to fine-tune the microcavity and shift the resonance by three linewidths without compromising its quality factor. This optically-driven micro-actuator offers a unique approach for post-fabrication assembly and reconfiguration of photonic circuits, paving the way for adaptive, multifunctional photonic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405551 | PMC |
http://dx.doi.org/10.1038/s41467-025-63521-z | DOI Listing |