Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Myocardial infarction (MI) induces cardiomyocyte necrosis, inflammation, fibrosis, and ventricular remodeling, leading to heart failure. To address this, we developed an intelligent cardiac patch, SMM@Gel, composed of a reactive oxygen species (ROS)-responsive PVA-TSPBA hydrogel matrix reinforced via solvent exchange and salting-out technology, loaded with mannose-functionalized, danshensu sodium-loaded hollow mesoporous polydopamine nanoparticles (Sa@mPDA-Man). This design makes sustained drug release and ROS scavenging come true. In vitro, studies demonstrated SMM@Gel promoted endothelial tube formation (24 ± 3 nodes vs. 6 ± 2 in controls) and M2 macrophage polarization (CD206+ cells) while reducing inflammation (iNOS downregulation). In vivo, experiments in MI rats revealed SMM@Gel preserved left ventricular ejection fraction (LVEF: 52.3 % ± 4.1 % vs. 38.5 % ± 3.2 % in the saline group), normalized ventricular dimensions (EDV/ESV) and enhanced wall thickness. Histological analysis showed reduced infarct size (18.7 % ± 2.5 % vs. 32.1 % ± 3.8 %), decreased inflammation, and improved neovascularization. RNA-seq identified pathways linked to angiogenesis, inflammation resolution, and extracellular matrix remodeling. These findings highlight SMM@Gel's potential as a dual-action therapy for MI, combining ROS scavenging, anti-inflammatory effects, and angiogenic promotion to mitigate post-MI remodeling and preserve cardiac function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391695 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2025.08.014 | DOI Listing |