98%
921
2 minutes
20
The mechanical characteristics of natural fibre composites (NFCs) are closely linked to fibre-matrix and fibre-fibre interactions. This work investigates the improvement of tensile properties of a flax/epoxy composite through the application of click chemistry reaction to a unidirectional-mat (UDM) reinforcement with modifications made on the short fibre mat and unidirectional flax fibre phases of the reinforcement. The surface of short flax fibres was fibrillated to increase the accessibility of hydroxyl groups for all preliminary reactions and the final click chemistry cross-linking, which creates stable covalent triazole bonds between azide and alkyne groups. A small percentage of treated nanocellulose was incorporated to further enhance the reinforcement properties. FTIR and EDX analysis confirmed the presence of the various functional groups on the surface of nanocellulose and flax fibres with very high degrees of substitution. The treatment significantly improved the mechanical properties of the dry reinforcement, including a 220% mean increase in the tensile strength. However, the treatments, particularly the addition of nanocellulose, resulted in a reduction in the permeability to liquid resin of the reinforcements, highlighting the need for compromises in their manufacture. Nonetheless, marked improvements in tensile strength and Young's modulus were obtained for composites made of pre-compacted and cross-linked fibre preforms. Increases in elastic modulus, strength and strain at break of up to 50.1%, 53.8% and 10.1% were obtained, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12396742 | PMC |
http://dx.doi.org/10.1177/00219983251341628 | DOI Listing |
mSphere
September 2025
Leiden Institute of Chemistry and The Institute of Chemical Immunology, Leiden University, Leiden, the Netherlands.
Bacterial persisters are a subpopulation of cells that exhibit a transient non-susceptible phenotype in the presence of bactericidal antibiotic concentrations. This phenotype can lead to the survival and regrowth of bacteria after treatment, resulting in relapse of infections. It is also a contributing factor to antibacterial resistance.
View Article and Find Full Text PDFOrg Lett
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, Beijing 102205, China.
Optically active α-aminophosphonic acids are unique analogues of α-amino acids, and numerous synthetic methods have been developed. Herein, we present a highly diastereoselective α-azidation approach to the CAMDOL-derived phosphonates, enabling ready access to 27 diverse α-azidophosphonates with defined chirality in up to 85% yield and more than 99:1 dr. Late-stage transformations through the Staudinger reaction or click reaction efficiently delivered the related pharmacological α-aminophosphonic acids or the unique α-triazolylphosphonate derivative, respectively.
View Article and Find Full Text PDFMicrobiol Spectr
September 2025
Department of Viral Transformation, Leibniz Institute of Virology (LIV), Martinistraße, Hamburg, Germany.
Unlabelled: Human adenoviruses (HAdVs) induce significant reorganization of the nuclear environment, leading to the formation of virus-induced subnuclear structures known as replication compartments (RCs). Within these RCs, viral genome replication, gene expression, and modulation of cellular antiviral responses are tightly coordinated, making them valuable models for studying virus-host interactions. In a recent study, we analyzed the protein composition of HAdV type 5 (HAdV-C5) RCs isolated from infected primary cells at different time points during infection using quantitative proteomics.
View Article and Find Full Text PDFiScience
September 2025
Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia.
5-Ethynyl-2'-deoxyuridine (EdU) has revolutionized DNA replication and cell cycle analyses through fast, efficient click chemistry detection. However, commercial EdU kits suffer from high costs, proprietary formulations, limited antibody multiplexing capabilities, and difficulties with larger biological specimens. Here, we present OpenEMMU (Open-source EdU Multiplexing Methodology for Understanding DNA replication dynamics), an optimized, affordable, and user-friendly click chemistry platform utilizing off-the-shelf reagents.
View Article and Find Full Text PDFElectrophoresis
September 2025
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, P. R. China.
A novel post-modification strategy was developed for rapid functionalization of monoliths through amino-yne click chemistry. This approach enabled the conjugation of activated alkynes onto amino-functionalized organic-silica hybrid monolith surfaces under mild, catalyst-free conditions. Systematic investigation of critical reaction parameters was conducted to optimize the post-modification process.
View Article and Find Full Text PDF