A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The role of non-linear viscoelastic hydrogel mechanics in cell culture and transduction. | LitMetric

The role of non-linear viscoelastic hydrogel mechanics in cell culture and transduction.

Mater Today Bio

University of Trieste, Department of Life Sciences, Via L. Giorgieri 5, Trieste, 34127, Italy.

Published: October 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The mechanical complexity of the extracellular matrix (ECM) is central to how cells sense and respond to their environment, yet hydrogel design has often focused narrowly on stiffness. Emerging evidence highlights the importance of viscoelastic stress relaxation and plasticity in cell mechanotransduction. However, a key aspect remains underexplored: non-linear viscoelasticity, where stress relaxation and plasticity depend on the magnitude of applied stress or strain. In this perspective, we examine how such non-linear mechanical behaviors manifest in widely used hydrogels and discuss their biological relevance. We present experimental approaches, including oscillatory shear rheology, to detect non-linear viscoelastic effects, and introduce mathematical modeling approaches to interpret these behaviors. We find evidence in literature that several hydrogels commonly used in cell culture exhibit non-linear viscoelasticity occurring at stress and strain levels relevant to cell-generated forces. Specifically, both softening and stiffening hydrogels were found to exhibit accelerated stress relaxation or increased plasticity due to nonlinear viscoelasticity. By viewing non-linearity as a tunable design parameter, future hydrogel systems may better recapitulate the dynamic mechanical feedback loops cells experience in native tissues. This perspective encourages a paradigm shift in biomaterial design, integrating non-linear viscoelasticity into the next generation of ECM-mimetic hydrogels for cell culture and regenerative applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391783PMC
http://dx.doi.org/10.1016/j.mtbio.2025.102188DOI Listing

Publication Analysis

Top Keywords

cell culture
12
stress relaxation
12
non-linear viscoelasticity
12
non-linear viscoelastic
8
relaxation plasticity
8
stress strain
8
stress
5
non-linear
5
role non-linear
4
viscoelastic hydrogel
4

Similar Publications