98%
921
2 minutes
20
Biodiesel is a renewable and biodegradable alternative fuel, but its susceptibility to oxidative degradation compromises its storage stability and performance. Synthetic antioxidants are commonly used to mitigate this issue. However, there is growing interest in natural antioxidants as sustainable alternatives. This study aimed to investigate the thermal-oxidative degradation of pure biodiesel (B100) and biodiesel with coffee leaf extract (B100E) using H NMR spectroscopy as well as to correlate the iodine value (IV) with NMR spectra and monitor the formation of oxidation products throughout the degradation process. Biodiesel samples underwent accelerated oxidation at 110 °C using the Rancimat method, followed by H NMR analysis to identify oxidation products. The degradation kinetics indicated that linolenate and linoleate compounds were oxidized faster than oleate groups, leading to an increase in the number of saturated compounds. A linear correlation was found between the percentage of olefinic hydrogen atoms from the H NMR spectra and the iodine value determined by the Wijs method. The addition of coffee leaf extract effectively delayed oxidation, as evidenced by the slower appearance of oxidation products and a reduced increase in saturated compounds. These findings highlight a novel and efficient methodology for evaluating biodiesel degradation and unsaturation by combining H NMR analysis with iodine value determination. In addition to enabling a rapid, nondestructive estimation of IV, H NMR also allowed the characterization of different stages of oxidative degradation through the identification and monitoring of specific oxidation products over time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12391966 | PMC |
http://dx.doi.org/10.1021/acsomega.5c02859 | DOI Listing |
Langmuir
September 2025
Microelectronics & Nanotechnology-Shamsuddin Research Centre (MiNT-SRC), Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400 Johor, Malaysia.
Achieving a crack-free, high-surface-area photoanode is essential for maximizing the efficiency of dye-sensitized solar cells (DSSCs). In this work, rutile titanium dioxide (rTiO) nanoflowers were synthesized hydrothermally and then conformally coated with copper(I) oxide (CuO) by RF magnetron sputtering to seal pre-existing cracks and to create a nanothorn surface favorable for dye adsorption. Systematic control of the sputtering time identified 60 min as optimal condition, yielding a photoanode thickness of about 6.
View Article and Find Full Text PDFMater Horiz
September 2025
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.
View Article and Find Full Text PDFNeurol Res
September 2025
Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran.
Background: Free radicals play a key role in spinal cord injury and curcumin has the potential to act as an antioxidant agent. Controlled delivery of curcumin can be achieved through encapsulation in bovine serum albumin to form nanoparticles, and acellular scaffold can bridge lesions and improve axonal growth in spinal cord injury.
Objective: In this study, we evaluated the antioxidant effects of the scaffold containing curcumin nanoparticles in the unilateral spinal cord injury model in male rats.
Korean J Anesthesiol
September 2025
Institute of Medical Science, Gyeongsang National University, Jinju-si, Gyeongsangnam-do, Republic of Korea.
Background: High-dose insulin and euglycemic therapy are widely used to treat calcium channel blocker toxicity. However, the effect of insulin on vasodilation evoked by the dihydropyridine calcium channel blocker amlodipine remains unknown. This study examined the effect of insulin on amlodipine-induced vasodilation in isolated rat aortas with specific emphasis on mechanisms associated with nitric oxide (NO).
View Article and Find Full Text PDFJ Sleep Res
September 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Kansai Medical University, Hirakata, Japan.
In obstructive sleep apnea (OSA), repeated airway obstruction alters mucosal inflammation, which increases exhaled nitric oxide (NO) production in the nasal cavity. However, the underlying mechanism remains unclear. Accordingly, we aimed to examine the mechanism underlying NO production in patients with OSA.
View Article and Find Full Text PDF