98%
921
2 minutes
20
The role of induced gene expression is crucial for tissue regeneration. The transient regenerative cellular state that discriminates between missing-tissue and non-missing-tissue injuries remains to be fully elucidated. In this study, we identified a homolog of Platelet-Derived Growth Factor (PDGF), named (), in the planarian . This gene exhibits inducible expression following missing-tissue injury in a back-and-forth manner between muscular cells and stem cells. The dynamic expression of is induced through the elevation of reactive oxygen species (ROS) levels and phosphorylated extracellular signal-regulated kinase (pERK) signaling over short distances. Suppression of expression impairs the regrowth of essential structures, including the intestine and central nervous system. Evidence on the decrease of and at the anterior pole, together with the accumulation of PIWI-1 progenitors, suggests a role of in pole muscular cell differentiation. These findings highlight the significant impact of in orchestrating the behavior of specific cell types by the regional specificity of this gene expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1073/pnas.2501874122 | DOI Listing |
Cell Mol Biol (Noisy-le-grand)
September 2025
Arencibia Clinic, San Sebastian, Spain.
Follicular unit extraction (FUE) has become a leading technique in hair transplantation, yet optimal management of the donor area remains a clinical challenge. This systematic review analyzes intraoperative and postoperative interventions applied to the donor area in FUE hair transplantation, with a focus on both clinical outcomes and the cellular and molecular mechanisms involved in tissue repair, inflammatory response, and regenerative processes. A comprehensive literature search was conducted in PubMed and EMBASE (January 2000-June 2025), identifying clinical studies that evaluated donor area treatments and reported outcomes related to healing, inflammation, infection, and patient satisfaction.
View Article and Find Full Text PDFCutan Ocul Toxicol
September 2025
Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Kirumampakkam, Puducherry, India.
Purpose Of The Article: Snail mucin (SM) has garnered significant attention in dermatology, particularly for its potential in scar therapy and wound healing, due to its bioactive compounds, like allantoin, glycolic acid, and hyaluronic acid. These compounds are known to promote tissue regeneration, enhance skin hydration, and reduce scarring.
Materials And Methods: However, despite growing interest, significant gaps remain in the clinical understanding of SM's therapeutic potential, including a lack of standardised formulations and limited clinical trials.
Regen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
ACS Nano
September 2025
Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev
Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.
View Article and Find Full Text PDFInt J Oral Implantol (Berl)
September 2025
Purpose: To evaluate changes in implant stability quotient values of hydrophilic tissue-level implants over time, and to investigate the influence of local factors on variations in these values.
Methods: Fifty tapered, self-tapping, tissue-level implants with a hydrophilic surface were placed and monitored for 12 months. Implant stability quotient values were recorded at the time of insertion (T0) and monthly thereafter for 12 months.