Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Aluminum monofluoride (AlF) is a promising candidate for laser cooling and the production of dense ultracold molecular gases, thanks to its relatively high chemical stability and diagonal Franck-Condon factors. In this study, we examine the interactions and collisions of AlF in its Σ, Π, and Π electronic states with ground-state He using state-of-the-art ab initio quantum chemistry techniques. We construct accurate potential energy surfaces (PESs) employing either the explicitly correlated coupled-cluster CCSD(T)-F12 method augmented by the CCSDT correction or the multireference configuration-interaction method for higher-excited electronic states. Subsequently, we employ these PESs in coupled-channel calculations to determine the scattering cross sections for AlF + He collisions and bound states of the complex. We estimate the uncertainty of the calculated PESs and apply it to assess the uncertainty of the scattering results. We find a relatively low sensitivity of the cross sections to the variation of the PESs, but the positions of shape resonances remain uncertain. The present results are relevant for further improvements and optimizations of buffer-gas cooling of AlF molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.5c02533 | DOI Listing |