Publications by authors named "Matthew D Frye"

Aluminum monofluoride (AlF) is a promising candidate for laser cooling and the production of dense ultracold molecular gases, thanks to its relatively high chemical stability and diagonal Franck-Condon factors. In this study, we examine the interactions and collisions of AlF in its Σ, Π, and Π electronic states with ground-state He using state-of-the-art ab initio quantum chemistry techniques. We construct accurate potential energy surfaces (PESs) employing either the explicitly correlated coupled-cluster CCSD(T)-F12 method augmented by the CCSDT correction or the multireference configuration-interaction method for higher-excited electronic states.

View Article and Find Full Text PDF

Tunable scattering resonances are crucial for controlling atomic and molecular systems. However, their use has so far been limited to ultracold temperatures. These conditions remain hard to achieve for most hybrid trapped ion-atom systems-a prospective platform for quantum technologies and fundamental research.

View Article and Find Full Text PDF

Bose-Einstein condensates of ultracold atoms serve as low-entropy sources for a multitude of quantum-science applications, ranging from quantum simulation and quantum many-body physics to proof-of-principle experiments in quantum metrology and quantum computing. For stability reasons, in the majority of cases the energetically lowest-lying atomic spin state is used. Here, we report the Bose-Einstein condensation of caesium atoms in the Zeeman-excited m = 2 state, realizing a non-ground-state Bose-Einstein condensate with tunable interactions and tunable loss.

View Article and Find Full Text PDF

We prepare mixtures of ultracold CaF molecules and Rb atoms in a magnetic trap and study their inelastic collisions. When the atoms are prepared in the spin-stretched state and the molecules in the spin-stretched component of the first rotationally excited state, they collide inelastically with a rate coefficient k_{2}=(6.6±1.

View Article and Find Full Text PDF

We study three-atom inelastic scattering in ultracold ^{39}K near a Feshbach resonance of intermediate coupling strength. The nonuniversal character of such resonance leads to an abnormally large Efimov absolute length scale and a relatively small effective range r_{e}, allowing the features of the ^{39}K Efimov spectrum to be better isolated from the short-range physics. Meticulous characterization of and correction for finite-temperature effects ensure high accuracy on the measurements of these features at large-magnitude scattering lengths.

View Article and Find Full Text PDF

Understanding and controlling collisions is crucial to the burgeoning field of ultracold molecules. All experiments so far have observed fast loss of molecules from the trap. However, the dominant mechanism for collisional loss is not well understood when there are no allowed 2-body loss processes.

View Article and Find Full Text PDF