Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uncovering the metabolic and molecular mechanisms involved in plant responses to drought and subsequent recovery, is essential to identify drought tolerance mechanisms that can be used to improve crop plants. Here we combine plant physiology and biochemistry, with gene expression, quantitative proteomics and metabolite profiling to identify the genetic and metabolic networks that operate in plants experiencing and recovering from drought. Network analysis of transcripts, proteins and metabolites revealed that certain biological processes such as the tricarboxylic acid cycle and lipid metabolism had a strong impact on the overall control of leaf responses to drought and recovery. The stimulation of carbohydrate oxidation pathways is demonstrated to be a key node in the generation of energy and precursors required to support diverse survival pathways of defence.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.70157DOI Listing

Publication Analysis

Top Keywords

drought subsequent
8
subsequent recovery
8
responses drought
8
drought
5
metabolism signalling
4
signalling pea
4
pea pisum
4
pisum sativum
4
sativum leaves
4
leaves exposed
4

Similar Publications

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Divergent effects of successive drought and flooding on photosynthesis in wheat and barley.

Front Plant Sci

August 2025

Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom.

Climate change is leading to increases in extreme weather events, notably increasing both droughts and floods, which undermine food security. Although each stress individually has been well studied, little is known about the response of cereals to successive water stresses, condition that often occurs in real-world scenarios. To address this gap, we have compared physiological responses of wheat and barley cultivars to cycles of drought and flooding.

View Article and Find Full Text PDF

Ensuring sufficient crop yields in an era of rapid population growth and limited arable land requires innovative strategies to enhance plant resilience and sustain, or even improve, growth and productivity despite environmental stress. Besides symbiotic nitrogen fixation, rhizobia may play a central role in sustainable agriculture by alleviating the detrimental effects of ethylene-a key stress hormone in plants-especially under conditions like drought through the deamination of 1-aminocyclopropane-1-carboxylic acid (ACC). In this study, we focused on genetically engineering a new Bradyrhizobium sp.

View Article and Find Full Text PDF

Droughts rank among the most devastating natural disasters, particularly in arid regions such as Oman. However, traditional drought assessment based on stationarity may not be applicable under climate change. Moreover, most previous studies have been point-based, relying on station observations without capturing the spatial variability of drought.

View Article and Find Full Text PDF

Grafting enhances drought stress tolerance by regulating the proteome and targeted gene regulatory networks in tomato.

Front Plant Sci

August 2025

Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

Tomato (), a widely cultivated yet perishable crop, depends heavily on adequate sunlight and water for optimal growth and productivity. However, due to unavoidable environmental and climatic changes-particularly drought-its productivity has declined in recent years. Grafting, an ancient horticultural practice, is known to enhance yield and combat abiotic stress by regulating physiological and cellular processes.

View Article and Find Full Text PDF