A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Medical Image Privacy in Federated Learning: Segmentation-Reorganization and Sparsified Gradient Matching Attacks. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In modern medicine, the widespread use of medical imaging has greatly improved diagnostic and treatment efficiency. However, these images contain sensitive personal information, and any leakage could seriously compromise patient privacy, leading to ethical and legal issues. Federated learning (FL), an emerging privacy-preserving technique, transmits gradients rather than raw data for model training. Yet, recent studies reveal that gradient inversion attacks can exploit this information to reconstruct private data, posing a significant threat to FL. Current attacks remain limited in image resolution, similarity, and batch processing, and thus do not yet pose a significant risk to FL. To address this, we propose a novel gradient inversion attack based on sparsified gradient matching and segmentation reorganization (SR) to reconstruct high-resolution, high-similarity medical images in batch mode. Specifically, an $L_{1}$ loss function optimises the gradient sparsification process, while the SR strategy enhances image resolution. An adaptive learning rate adjustment mechanism is also employed to improve optimisation stability and avoid local optima. Experimental results demonstrate that our method significantly outperforms state-of-the-art approaches in both visual quality and quantitative metrics, achieving up to a 146% improvement in similarity.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2025.3593631DOI Listing

Publication Analysis

Top Keywords

federated learning
8
sparsified gradient
8
gradient matching
8
gradient inversion
8
image resolution
8
gradient
5
medical image
4
image privacy
4
privacy federated
4
learning segmentation-reorganization
4

Similar Publications