Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In modern medicine, the widespread use of medical imaging has greatly improved diagnostic and treatment efficiency. However, these images contain sensitive personal information, and any leakage could seriously compromise patient privacy, leading to ethical and legal issues. Federated learning (FL), an emerging privacy-preserving technique, transmits gradients rather than raw data for model training. Yet, recent studies reveal that gradient inversion attacks can exploit this information to reconstruct private data, posing a significant threat to FL. Current attacks remain limited in image resolution, similarity, and batch processing, and thus do not yet pose a significant risk to FL. To address this, we propose a novel gradient inversion attack based on sparsified gradient matching and segmentation reorganization (SR) to reconstruct high-resolution, high-similarity medical images in batch mode. Specifically, an $L_{1}$ loss function optimises the gradient sparsification process, while the SR strategy enhances image resolution. An adaptive learning rate adjustment mechanism is also employed to improve optimisation stability and avoid local optima. Experimental results demonstrate that our method significantly outperforms state-of-the-art approaches in both visual quality and quantitative metrics, achieving up to a 146% improvement in similarity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2025.3593631 | DOI Listing |