Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spatial transcriptomics has emerged as a powerful tool to define the cellular structure of diverse tissues. One such method is multiplexed error robust fluorescence in situ hybridization (MERFISH). MERFISH identifies RNAs with error tolerant optical barcodes generated through sequential rounds of single-molecule fluorescence in situ hybridization (smFISH). MERFISH performance depends on a variety of protocol choices, yet their effect on performance has yet to be systematically examined. Here we explore a variety of properties to identify optimal choices for probe design, hybridization, buffer storage, and buffer composition. In each case, we introduce protocol modifications that can improve performance, and we show that, collectively, these modified protocols can improve MERFISH quality in both cell culture and tissue samples. As RNA FISH-based methods are used in many different contexts, we anticipate that the optimization experiments we present here may provide empirical design guidance for a broad range of methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399773PMC
http://dx.doi.org/10.1038/s41598-025-17477-1DOI Listing

Publication Analysis

Top Keywords

fluorescence situ
8
situ hybridization
8
protocol optimization
4
optimization improves
4
performance
4
improves performance
4
performance multiplexed
4
multiplexed rna
4
rna imaging
4
imaging spatial
4

Similar Publications

Background: Blinatumomab and inotuzumab ozogamicin (InO) are B-cell targeted agents used in the frontline and relapsed/refractory treatment of B-cell acute lymphoblastic leukaemia (B-ALL). Blinatumomab, a bispecific T-cell engager that targets CD19 and CD3, and InO, an antibody-drug conjugate targeting CD22, have both shown efficacy. However, recent reports have noted lineage conversion as a complication when these agents are used individually or sequentially.

View Article and Find Full Text PDF

IGL::CCND1 detected by optical genome mapping revises diagnosis of a B-cell lymphoma.

Am J Clin Pathol

September 2025

Laboratory for Clinical Genomics and Advanced Technology (CGAT)-Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.

Objective: Differentiating between the repertoire of immunoglobulin rearrangements is important in guiding diagnoses and management of B-cell lymphoma processes. A subset of these disease entities, such as chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL), can show distinct genomic profiles with a shared cell of origin. In this report, we describe a rare case in which differentiating between the immunoglobulin family of rearrangements (IGH, IGK, IGL) with optical genome mapping (OGM) helped revise the clinical suspicion of CLL.

View Article and Find Full Text PDF

Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant's C-terminal tail (Imre et al., Nat.

View Article and Find Full Text PDF

Cryo-electron tomography (cryoET) provides 3D datasets of organelles and proteins at nanometer and sub-nanometer resolution. However, locating target proteins in live cells remains a significant challenge. Conventional labeling methods, such as fluorescent protein tagging and immunogold labeling, are unsuitable for small structures in vitrified samples at molecular resolution.

View Article and Find Full Text PDF

Complex chromosomal changes in Acute Myeloid Leukemia (AML) are highly heterogeneous, with disease progression shaped by both the number and nature of abnormalities. Rarely do, multiple unrelated clones with independent chromosomal changes coexist at diagnosis. Present study showcases a comprehensive characterization of two cytogenetically distinct complex clones in AML, driven by non-cyclic and chromoplexy mechanisms, highlighting their co-existence with key molecular alterations (TP53, NF1, DNMT3A, TET2) along with their potential contribution to clonal evolution.

View Article and Find Full Text PDF